2025年课堂专题导学精练七年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年课堂专题导学精练七年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年课堂专题导学精练七年级数学下册人教版》

1. 一元一次不等式的解法解下列不等式,并把它们的解集分别在数轴上表示出来.
(1)$2x - 2 < 3x - 5$;
答案: 移项得$2x - 3x < -5 + 2$,即$-x < -3$,解得$x > 3$。
(2)$\frac{3 - x}{5} \leq \frac{1 - x}{4}$;
答案: 去分母得$4(3 - x) \leq 5(1 - x)$,即$12 - 4x \leq 5 - 5x$,移项得$x \leq -7$。
(3)$5(x + 1) > 2(1 - x)$.
答案: 去括号得$5x + 5 > 2 - 2x$,移项得$7x > -3$,解得$x > -\frac{3}{7}$。
2. 一元一次不等式组的解法解下列不等式组,并在数轴上表示其解集.
(1)$\begin{cases}2x - 1 > 9 \\ 3x - 1 < 2x + 7\end{cases}$;
答案: 解$2x - 1 > 9$得$x > 5$;解$3x - 1 < 2x + 7$得$x < 8$,解集$5 < x < 8$。
(2)$\begin{cases}\frac{1}{2}x - 1 < 0 \\ 3(x + 2) \leq 1\end{cases}$.
答案: 解$\frac{1}{2}x - 1 < 0$得$x < 2$;解$3(x + 2) \leq 1$得$x \leq -\frac{5}{3}$,解集$x \leq -\frac{5}{3}$。
3. 解下列不等式,并把它们的解集分别在数轴上表示出来.
(1)$2(x + 1) < 5$;
答案: 去括号得$2x + 2 < 5$,解得$x < \frac{3}{2}$。
(2)$\frac{x}{6} + 1 > \frac{x + 1}{2}$;
答案: 去分母得$x + 6 > 3(x + 1)$,即$x + 6 > 3x + 3$,解得$x < \frac{3}{2}$。
(3)$\frac{1}{2}x \leq 1 + \frac{1}{3}x$.
答案: 去分母得$3x \leq 6 + 2x$,解得$x \leq 6$。
4. 解下列不等式组,并把解集在数轴上表示出来.
(1)$\begin{cases}1 + 2x < 3x + 3 \\ x - 3 \leq 3(x + 1)\end{cases}$;
答案: 解$1 + 2x < 3x + 3$得$x > -2$;解$x - 3 \leq 3(x + 1)$得$x \geq -3$,解集$x > -2$。
(2)$\begin{cases}5x - 3 < 3x + 1 \\ \frac{x + 1}{3} \geq \frac{3x + 1}{2} + 1\end{cases}$.
答案: 解$5x - 3 < 3x + 1$得$x < 2$;解$\frac{x + 1}{3} \geq \frac{3x + 1}{2} + 1$得$x \leq -1$,解集$x \leq -1$。

查看更多完整答案,请扫码查看

关闭