2025年全优课堂九年级数学下册华师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全优课堂九年级数学下册华师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第71页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
1. 如图,已知⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA = GE. 求证:AG与⊙O相切.


答案:
证明:如图,连结$OA$.$\because OA = OB$,$GA = GE$,
$\therefore\angle ABO=\angle BAO$,$\angle GEA=\angle GAE$.
$\because EF\perp BC$,$\therefore\angle BFE = 90^{\circ}$,$\therefore\angle ABO+\angle BEF = 90^{\circ}$.又$\because\angle BEF=\angle GEA$,
$\therefore\angle GAE=\angle BEF$,
$\therefore\angle BAO+\angle GAE = 90^{\circ}$,即$OA\perp AG$,
又$\because$点$A$在$\odot O$上,$\therefore AG$与$\odot O$相切.
证明:如图,连结$OA$.$\because OA = OB$,$GA = GE$,
$\therefore\angle ABO=\angle BAO$,$\angle GEA=\angle GAE$.
$\because EF\perp BC$,$\therefore\angle BFE = 90^{\circ}$,$\therefore\angle ABO+\angle BEF = 90^{\circ}$.又$\because\angle BEF=\angle GEA$,
$\therefore\angle GAE=\angle BEF$,
$\therefore\angle BAO+\angle GAE = 90^{\circ}$,即$OA\perp AG$,
又$\because$点$A$在$\odot O$上,$\therefore AG$与$\odot O$相切.
2. 如图,Rt△ABC中,∠ABC = 90°,以AB为直径作半圆O交AC于点D,点E为BC的中点,连结DE. 求证:DE是半圆O的切线.

答案:
证明:如图,连结$OD$,$OE$,$BD$.$\because AB$为$\odot O$的直径,$\therefore\angle ADB=\angle BDC = 90^{\circ}$.在$\text{Rt}\triangle BDC$中,$E$为斜边$BC$的中点,
$\therefore DE = BE$,在$\triangle OBE$和$\triangle ODE$中,
$\begin{cases}OB = OD,\\OE = OE,\\BE = DE,\end{cases}$ $\therefore\triangle OBE\cong\triangle ODE$,
$\therefore\angle ODE=\angle ABC = 90^{\circ}$.$\because OD$为$\odot O$的半径,$\therefore DE$为半圆$O$的切线.
证明:如图,连结$OD$,$OE$,$BD$.$\because AB$为$\odot O$的直径,$\therefore\angle ADB=\angle BDC = 90^{\circ}$.在$\text{Rt}\triangle BDC$中,$E$为斜边$BC$的中点,
$\therefore DE = BE$,在$\triangle OBE$和$\triangle ODE$中,
$\begin{cases}OB = OD,\\OE = OE,\\BE = DE,\end{cases}$ $\therefore\triangle OBE\cong\triangle ODE$,
$\therefore\angle ODE=\angle ABC = 90^{\circ}$.$\because OD$为$\odot O$的半径,$\therefore DE$为半圆$O$的切线.
3. 如图,在△ABC中,AB = AC,D是BC边的中点,以点D为圆心的圆与AB相切于点E. 求证:AC与⊙D相切.
答案:
证明:如图,作$DF\perp AC$于点$F$,连结$AD$,$DE$.$\because AB$是$\odot D$的切线,$\therefore DE\perp AB$.$\because AB = AC$,$D$是$BC$的中点,$\therefore AD$平分$\angle BAC$.又$\because DE\perp AB$,$DF\perp AC$,
$\therefore DF = DE$,$\therefore AC$与$\odot D$相切.
证明:如图,作$DF\perp AC$于点$F$,连结$AD$,$DE$.$\because AB$是$\odot D$的切线,$\therefore DE\perp AB$.$\because AB = AC$,$D$是$BC$的中点,$\therefore AD$平分$\angle BAC$.又$\because DE\perp AB$,$DF\perp AC$,
$\therefore DF = DE$,$\therefore AC$与$\odot D$相切.
4. 如图,在△ABC中,∠ACB = 90°,∠ACB的平分线交AB于点O,以O为圆心的⊙O与AC相切于点D. 求证:BC与⊙O相切.

答案:
证明:如图,过点$O$作$OF\perp BC$,垂足为点$F$,连结$OD$.$\because AC$是圆的切线,
$\therefore OD\perp AC$.$\because OC$为$\angle ACB$的平分线,
$\therefore OF = OD$,$\therefore BC$与$\odot O$相切.
证明:如图,过点$O$作$OF\perp BC$,垂足为点$F$,连结$OD$.$\because AC$是圆的切线,
$\therefore OD\perp AC$.$\because OC$为$\angle ACB$的平分线,
$\therefore OF = OD$,$\therefore BC$与$\odot O$相切.
5. 如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN//BC交AB于点E,且ME = 1,AM = 2,AE = $\sqrt{3}$. 求证:BC是⊙O的切线.

答案:
证明:$\because$在$\triangle AME$中,$AM = 2$,$ME = 1$,$AE=\sqrt{3}$,$\therefore AM^{2}=ME^{2}+AE^{2}$,$\therefore\triangle AME$是直角三角形,$\therefore\angle AEM = 90^{\circ}$.
又$\because MN// BC$,$\therefore\angle ABC=\angle AEM = 90^{\circ}$,
$\therefore AB\perp BC$.又$AB$为$\odot O$的直径,
$\therefore BC$是$\odot O$的切线.
又$\because MN// BC$,$\therefore\angle ABC=\angle AEM = 90^{\circ}$,
$\therefore AB\perp BC$.又$AB$为$\odot O$的直径,
$\therefore BC$是$\odot O$的切线.
查看更多完整答案,请扫码查看