2025年拔尖特训八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年拔尖特训八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年拔尖特训八年级数学上册人教版》

1. (2023·金昌)如图,BD是等边三角形ABC的边AC上的高,以点D为圆心,DB长为半径画弧,交BC的延长线于点E,连接DE,则∠DEC的度数为 (
C
)
第1题
A. $20^{\circ}$
B. $25^{\circ}$
C. $30^{\circ}$
D. $35^{\circ}$
答案: C
2. 如图,$AB = AC$,D是BC的中点,AB平分$∠DAE$,$AE⊥BE$,垂足为E.若$BE// AC$,则$∠C$的度数为
$60^{\circ}$
.
答案: $60^{\circ}$
3. (2024·济南槐荫期末)如图,$△ABC$为等边三角形,BD平分$∠ABC$交AC于点D,$DE// BC$交AB于点E.求证:
(1)$△ADE$是等边三角形.
(2)$AE=\frac{1}{2}AB$.
第3题
答案:
(1) $\because \triangle ABC$为等边三角形,
$\therefore \angle A=\angle ABC=\angle C=60^{\circ}$.
$\because DE// BC$,
$\therefore \angle AED=\angle ABC=60^{\circ}$,$\angle ADE=\angle C=60^{\circ}$.
$\therefore \angle A=\angle AED=\angle ADE$.
$\therefore \triangle ADE$是等边三角形.
(2) $\because \triangle ABC$为等边三角形,
$\therefore AB=BC=AC$.
$\because BD$平分$\angle ABC$,
$\therefore AD=\frac{1}{2}AC$.

(1)知,$\triangle ADE$是等边三角形,
$\therefore AE=AD$.
$\therefore AE=\frac{1}{2}AB$.
4. 如图,在等边三角形ABC中,D,E分别为AB,AC上的动点,$BD = 2AE$,连接DE,以DE为边在$△ABC$内作等边三角形DEF,连接CF.当点D从点A出发向点B运动(不与点B重合)时,$∠ECF$的度数的变化情况是 ( )
第4题
A. 不变
B. 变小
C. 变大
D. 先变大后变小
答案:
A 解析:如图,在$AC$上截取$CN=AE$,连接$FN$. $\because \triangle ABC$是等边三角形,$\therefore \angle A=60^{\circ}$,$AB=AC$.
$\because BD=2AE$,$\therefore$易得$AD=NE$.
$\because \triangle DEF$是等边三角形,$\therefore DE=EF$,$\angle DEF=60^{\circ}$. $\because \angle ADE=180^{\circ}-\angle A-\angle AED=180^{\circ}-60^{\circ}-\angle AED=120^{\circ}-\angle AED$,$\angle NEF=180^{\circ}-\angle DEF-\angle AED=180^{\circ}-60^{\circ}-\angle AED=120^{\circ}-\angle AED$,
$\therefore \angle ADE=\angle NEF$. 在$\triangle ADE$和$\triangle NEF$中,$\begin{cases}AD=NE,\\\angle ADE=\angle NEF,\\DE=EF,\end{cases}$
$\therefore \triangle ADE\cong \triangle NEF$. $\therefore AE=NF$,$\angle A=\angle FNE=60^{\circ}$. $\therefore NF=CN$.
$\therefore \angle NCF=\angle NFC$. $\because \angle FNE=\angle NCF+\angle NFC=60^{\circ}$,$\therefore \angle NCF=30^{\circ}$,即$\angle ECF=30^{\circ}$. $\therefore$当点$D$从点$A$出发向点$B$运动(不与点$B$重合)时,$\angle ECF$的度数不变.
    第4题
5. 如图,$∠ABC = 120^{\circ}$,BD平分$∠ABC$,$∠DAC = 60^{\circ}$.若$AB = 2$,$BC = 3$,则BD的长为 ( )
第5题
A. 5
B. 7
C. 8
D. 9
答案:
A 解析:如图,在$CB$的延长线上取点$E$,使$BE=AB$,连接$AE$.
$\because \angle ABC=120^{\circ}$,$\therefore \angle ABE=180^{\circ}-\angle ABC=60^{\circ}$. $\because BE=AB$,
$\therefore \triangle ABE$是等边三角形. $\therefore AE=AB$,$\angle BAE=\angle E=60^{\circ}$. $\because \angle DAC=60^{\circ}$,$\therefore \angle DAC=\angle BAE$. $\because \angle BAD=\angle BAC+\angle DAC$,$\angle EAC=\angle BAC+\angle BAE$,$\therefore \angle BAD=\angle EAC$. $\because BD$平分$\angle ABC$,$\therefore \angle ABD=\frac{1}{2}\angle ABC=60^{\circ}$. $\therefore \angle ABD=\angle E$. 在$\triangle ABD$和$\triangle AEC$中,$\begin{cases}\angle BAD=\angle EAC,\\AB=AE,\\\angle ABD=\angle E,\end{cases}$
$\therefore \triangle ABD\cong \triangle AEC$. $\therefore BD=EC$.
$\because EC=BE+BC=AB+BC=2+3=5$,$\therefore BD=5$.
   第5题
6. 如图,在$△ABC$中,$∠ACB = 90^{\circ}$,$∠BAC = 30^{\circ}$,$BC = 4$,且E为边BC的中点,连接AE,以AE为边向上作等边三角形ADE,连接BD,则BD的长为______.
第6题
答案:
6 解析:如图,延长$BC$到点$T$,使得$CT=CB$,连接$AT$. 由题意,得$AC\perp BT$. 又$\because CB=CT$,$\therefore AB=AT$. $\therefore$易得$\angle BAC=\angle TAC=30^{\circ}$.
$\therefore \angle BAT=60^{\circ}$. $\therefore \triangle ABT$是等边三角形. $\because \triangle ADE$是等边三角形,
$\therefore \angle EAD=60^{\circ}$,$AD=AE$. $\therefore \angle EAD=\angle BAT$. $\therefore$易得$\angle BAD=\angle TAE$. 在$\triangle BAD$和$\triangle TAE$中,$\begin{cases}AB=AT,\\\angle BAD=\angle TAE,\\AD=AE,\end{cases}$
$\therefore \triangle BAD\cong \triangle TAE$. $\therefore BD=TE$. 由题意,易得$BC=CT=4$,$EC=EB=2$. $\therefore TE=EC+CT=6$. $\therefore BD=TE=6$. $\therefore BD$的长为6.
    第6题
7. 如图①,$△ABC$是等边三角形,点D在$△ABC$内部,且$∠BDC = 120^{\circ}$.
(1)设$∠ABD = α$,求$∠ACD$的度数(用含α的式子表示).
(2)如图②,E是BC的中点,连接AD,DE,用等式表示线段AD与DE之间的数量关系,并加以证明.
第7题
答案:
(1) $\because \triangle ABC$是等边三角形,
$\therefore \angle ABC=\angle ACB=60^{\circ}$,即$\angle ABD+\angle DBC=60^{\circ}$,$\angle ACD+\angle BCD=60^{\circ}$.
$\because \angle BDC=120^{\circ}$,
$\therefore \angle DBC+\angle BCD=180^{\circ}-120^{\circ}=60^{\circ}$.
$\therefore$易得$\angle ABD+\angle ACD=60^{\circ}$.
$\therefore \angle ACD=60^{\circ}-\angle ABD=60^{\circ}-\alpha$.
(2) $AD=2DE$.
延长$CD$至点$F$,使$DF=BD$,连接$BF$,$AF$.
$\because \angle BDC=120^{\circ}$,
$\therefore \angle BDF=180^{\circ}-\angle BDC=60^{\circ}$.
$\because DF=BD$,
$\therefore \triangle BDF$是等边三角形.
$\therefore BF=DF=BD$,$\angle FBD=\angle BFD=60^{\circ}$.
$\therefore \angle ABF+\angle ABD=60^{\circ}$.
$\because \angle ABC=\angle ABD+\angle DBC=60^{\circ}$,
$\therefore \angle ABF=\angle DBC$.
$\because \triangle ABC$是等边三角形,
$\therefore AB=BC$.
$\therefore \triangle ABF\cong \triangle CBD$.
$\therefore AF=CD$,$\angle BFA=\angle BDC=120^{\circ}$.
$\therefore \angle AFD=\angle BFA-\angle BFD=60^{\circ}$.
延长$DE$至点$G$,使$GE=DE$,连接$BG$.
$\because E$是$BC$的中点,
$\therefore BE=CE$.
又$\because \angle BEG=\angle CED$,$GE=DE$,
$\therefore \triangle BEG\cong \triangle CED$.
$\therefore BG=CD$,$\angle GBE=\angle DCE$.
$\therefore BG=AF$.
$\because \angle BDC=120^{\circ}$,
$\therefore \angle DCB+\angle DBC=60^{\circ}$.
$\therefore \angle GBE+\angle DBC=60^{\circ}$,即$\angle GBD=60^{\circ}$.
$\therefore \angle GBD=\angle AFD=60^{\circ}$.
在$\triangle DFA$和$\triangle DBG$中,
$\begin{cases}DF=DB,\\\angle AFD=\angle GBD,\\AF=GB,\end{cases}$
$\therefore \triangle DFA\cong \triangle DBG$.
$\therefore AD=GD=DE+GE=2DE$.

查看更多完整答案,请扫码查看

关闭