2025年拔尖特训八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年拔尖特训八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年拔尖特训八年级数学上册人教版》

10. 如图,在$\triangle ABC$中,$AD$平分$\angle BAC$.
(1) 尺规作图:作线段$AD$的垂直平分线$EF$,垂足为$O$,分别交$AB$,$AC$于点$E$,$F$.连接$DF$(保留作图痕迹,不要求写作法).
(2) 在(1)的条件下,猜想线段$AE$与$DF$的关系,并说明理由.
第10题
答案:
(1)如图,直线$EF$,线段$DF$即为所求。
(2)线段$AE$与$DF$平行且相等。
理由:$\because$直线$EF$为线段$AD$的垂直平分线,$\therefore OA = OD$,$AF = DF$。$\therefore \angle DAF=\angle ADF$。$\because AD$平分$\angle BAC$,$\therefore \angle BAD=\angle FAD$。$\therefore \angle BAD=\angle ADF$。$\therefore AE// DF$。$\because \angle AOE=\angle DOF$,$\therefore \triangle AOE\cong\triangle DOF$。$\therefore AE = DF$。$\therefore$线段$AE$与$DF$平行且相等。
第10题
11. 如图,$\angle BAC$的平分线与$BC$的垂直平分线$DG$相交于点$D$,连接$BD$,过点$D$作$DE\perp AB$于点$E$,$DF\perp AC$交$AC$的延长线于点$F$.
(1) 求证:$BE = CF$.
(2) 若$AB = 15$,$AC = 9$,求$BE$的长.
第11题
答案:
(1)如图,连接$CD$。$\because DG$是$BC$的垂直平分线,$\therefore BD = CD$。$\because DE\perp AB$,$DF\perp AC$,$AD$平分$\angle BAC$,$\therefore DE = DF$,$\angle BED=\angle CFD = 90^{\circ}$。在$Rt\triangle BDE$和$Rt\triangle CDF$中,$\left\{\begin{array}{l}BD = CD,\\ DE = DF,\end{array}\right.$ $\therefore Rt\triangle BDE\cong Rt\triangle CDF$。$\therefore BE = CF$。
(2)由(1),得$BE = CF$,设$BE = CF = x$。$\because DE\perp AB$,$DF\perp AC$,$\therefore \angle DEA=\angle DFA = 90^{\circ}$。在$Rt\triangle ADE$和$Rt\triangle ADF$中,$\left\{\begin{array}{l}AD = AD,\\ DE = DF,\end{array}\right.$ $\therefore Rt\triangle ADE\cong Rt\triangle ADF$。$\therefore AE = AF$。$\because AB = 15$,$AC = 9$,$\therefore 15 - x = 9 + x$,解得$x = 3$。$\therefore BE = 3$。
第11题
12. (2024·雅安雨城段考)已知$\triangle ABC$是三边都不相等的三角形,$P$是三个内角的平分线的交点,$O$是三边的垂直平分线的交点,当点$P$,$O$同时在不等边三角形$ABC$的内部时,那么$\angle BOC$和$\angle BPC$的数量关系是$\angle BOC =$______.
第12题
答案:
$4\angle BPC - 360^{\circ}$ 解析:$\because BP$平分$\angle ABC$,$CP$平分$\angle ACB$,$\therefore \angle PBC=\frac{1}{2}\angle ABC$,$\angle PCB=\frac{1}{2}\angle ACB$。$\therefore \angle BPC = 180^{\circ}-(\angle PBC+\angle PCB)=180^{\circ}-(\frac{1}{2}\angle ABC+\frac{1}{2}\angle ACB)=180^{\circ}-\frac{1}{2}(\angle ABC+\angle ACB)=180^{\circ}-\frac{1}{2}(180^{\circ}-\angle BAC)=90^{\circ}+\frac{1}{2}\angle BAC$,即$\angle BAC = 2\angle BPC - 180^{\circ}$。如图,连接$AO$。$\because O$是这个三角形三边的垂直平分线的交点,$\therefore OA = OB = OC$。$\therefore \angle OAB=\angle OBA$,$\angle OAC=\angle OCA$,$\angle OBC=\angle OCB$。$\therefore \angle AOB = 180^{\circ}-2\angle OAB$,$\angle AOC = 180^{\circ}-2\angle OAC$。$\therefore \angle BOC = 360^{\circ}-(\angle AOB+\angle AOC)=360^{\circ}-(180^{\circ}-2\angle OAB + 180^{\circ}-2\angle OAC)=2\angle OAB + 2\angle OAC = 2\angle BAC = 2(2\angle BPC - 180^{\circ})=4\angle BPC - 360^{\circ}$。
第12题
13. 如图,在$\triangle ABC$中,$DM$,$EN$分别垂直平分$AC$,$BC$,交$AB$于$M$,$N$两点,$DM$与$EN$的延长线相交于点$F$,连接$CM$,$CN$.
(1) 若$\angle ACB = 120^{\circ}$,则$\angle MCN$的度数为
$60^{\circ}$
.
(2) 若$\angle MCN = \alpha$,则$\angle MFN$的度数为
$90^{\circ}-\frac{1}{2}\alpha$
(用含$\alpha$的式子表示).
(3) 连接$FA$,$FB$,$FC$.若$\triangle CMN$的周长为$6\mathrm{c}\mathrm{m}$,$\triangle FAB$的周长为$14\mathrm{c}\mathrm{m}$,求$FC$的长.
$\because \triangle CMN$的周长为$6cm$,$\therefore MC + MN + NC = 6cm$。又$\because MC = MA$,$NC = NB$,$\therefore MA + MN + NB = 6cm$,即$AB = 6cm$。$\because \triangle FAB$的周长为$14cm$,$\therefore FA + FB + AB = 14cm$。$\therefore FA + FB = 8cm$。$\because DF$,$EF$分别垂直平分$AC$,$BC$,$\therefore FA = FC$,$FB = FC$。$\therefore 2FC = 8cm$。$\therefore FC = 4cm$。
答案: (1)$60^{\circ}$。
(2)$90^{\circ}-\frac{1}{2}\alpha$。解析:$\because DM$,$EN$分别垂直平分$AC$,$BC$,$\therefore MA = MC$,$NB = NC$。$\therefore \angle ACM=\angle CAM$,$\angle NCB=\angle NBC$。又$\because$在$\triangle ABC$中,$\angle CAM+\angle NBC+\angle ACM+\angle NCB+\angle MCN = 180^{\circ}$,$\therefore 2(\angle CAM+\angle NBC)+\angle MCN = 180^{\circ}$,即$2(\angle CAM+\angle NBC)+\alpha = 180^{\circ}$。$\therefore \angle CAM+\angle NBC=\frac{1}{2}(180^{\circ}-\alpha)=90^{\circ}-\frac{1}{2}\alpha$。$\because$在$\triangle FMN$中,$\angle MFN = 180^{\circ}-\angle FMN-\angle FNM$,易得$\angle FMN=\angle AMD = 90^{\circ}-\angle CAM$,$\angle FNM=\angle BNE = 90^{\circ}-\angle NBC$,$\therefore \angle MFN = 180^{\circ}-(90^{\circ}-\angle CAM)-(90^{\circ}-\angle NBC)=\angle CAM+\angle NBC = 90^{\circ}-\frac{1}{2}\alpha$。
(3)$\because \triangle CMN$的周长为$6cm$,$\therefore MC + MN + NC = 6cm$。又$\because MC = MA$,$NC = NB$,$\therefore MA + MN + NB = 6cm$,即$AB = 6cm$。$\because \triangle FAB$的周长为$14cm$,$\therefore FA + FB + AB = 14cm$。$\therefore FA + FB = 8cm$。$\because DF$,$EF$分别垂直平分$AC$,$BC$,$\therefore FA = FC$,$FB = FC$。$\therefore 2FC = 8cm$。$\therefore FC = 4cm$。

查看更多完整答案,请扫码查看

关闭