第11页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
10. (1) 如图①,请探究∠ADB与∠A,∠B,∠ACB之间的数量关系,并给出证明.
(2) 如图②,DE平分∠ADB,CE平分∠ACB,∠A=24°,∠B=66°,求∠E的度数.

(2) 如图②,DE平分∠ADB,CE平分∠ACB,∠A=24°,∠B=66°,求∠E的度数.
答案:
(1) $ \angle ADB = \angle A + \angle B + \angle ACB $。如图,连接 $ CD $ 并延长至点 $ O $。$ \therefore \angle ADO = \angle A + \angle ACO $,$ \angle BDO = \angle B + \angle BCO $。$ \because \angle ADB = \angle ADO + \angle BDO $,$ \therefore \angle ADB = \angle A + \angle ACO + \angle B + \angle BCO $。$ \therefore \angle ADB = \angle A + \angle B + \angle ACB $。
(2) 由
(1),可得 $ \angle ADB = \angle A + \angle B + \angle ACB $,$ \angle ADE = \angle A + \angle E + \angle ACE $。$ \because DE $ 平分 $ \angle ADB $,$ CE $ 平分 $ \angle ACB $,$ \therefore \angle ADE = \frac{1}{2} \angle ADB $,$ \angle ACE = \frac{1}{2} \angle ACB $。$ \therefore \frac{1}{2} \angle ADB = \angle A + \angle E + \frac{1}{2} \angle ACB $,即 $ \angle ADB = 2 \angle A + 2 \angle E + \angle ACB $。$ \therefore \angle A + \angle B + \angle ACB = 2 \angle A + 2 \angle E + \angle ACB $。整理,得 $ \angle E = \frac{1}{2} (\angle B - \angle A) $。$ \because \angle A = 24^{\circ} $,$ \angle B = 66^{\circ} $,$ \therefore \angle E = \frac{1}{2} \times (66^{\circ} - 24^{\circ}) = 21^{\circ} $。
(1) $ \angle ADB = \angle A + \angle B + \angle ACB $。如图,连接 $ CD $ 并延长至点 $ O $。$ \therefore \angle ADO = \angle A + \angle ACO $,$ \angle BDO = \angle B + \angle BCO $。$ \because \angle ADB = \angle ADO + \angle BDO $,$ \therefore \angle ADB = \angle A + \angle ACO + \angle B + \angle BCO $。$ \therefore \angle ADB = \angle A + \angle B + \angle ACB $。
(2) 由
(1),可得 $ \angle ADB = \angle A + \angle B + \angle ACB $,$ \angle ADE = \angle A + \angle E + \angle ACE $。$ \because DE $ 平分 $ \angle ADB $,$ CE $ 平分 $ \angle ACB $,$ \therefore \angle ADE = \frac{1}{2} \angle ADB $,$ \angle ACE = \frac{1}{2} \angle ACB $。$ \therefore \frac{1}{2} \angle ADB = \angle A + \angle E + \frac{1}{2} \angle ACB $,即 $ \angle ADB = 2 \angle A + 2 \angle E + \angle ACB $。$ \therefore \angle A + \angle B + \angle ACB = 2 \angle A + 2 \angle E + \angle ACB $。整理,得 $ \angle E = \frac{1}{2} (\angle B - \angle A) $。$ \because \angle A = 24^{\circ} $,$ \angle B = 66^{\circ} $,$ \therefore \angle E = \frac{1}{2} \times (66^{\circ} - 24^{\circ}) = 21^{\circ} $。
11. (2024·达州改编)如图,在△ABC中,AE₁,BE₁分别是内角∠CAB和外角∠CBD的三等分线,且∠E₁AD=1/3∠CAB,∠E₁BD=1/3∠CBD.
(1) 若∠C=60°,则∠E₁=______.
(2) 在△ABE₁中,AE₂,BE₂分别是内角∠E₁AB和外角∠E₁BD的三等分线,且∠E₂AD=1/3∠E₁AB,∠E₂BD=1/3∠E₁BD,…,以此规律继续作下去.若∠C=m°,试用含m,n的式子表示∠Eₙ的度数.

(1) 若∠C=60°,则∠E₁=______.
(2) 在△ABE₁中,AE₂,BE₂分别是内角∠E₁AB和外角∠E₁BD的三等分线,且∠E₂AD=1/3∠E₁AB,∠E₂BD=1/3∠E₁BD,…,以此规律继续作下去.若∠C=m°,试用含m,n的式子表示∠Eₙ的度数.
答案:
(1) $ 20^{\circ} $。解析:如图,依题意,得 $ \angle C = 60^{\circ} $,$ \angle 1 = \frac{1}{3} \angle CAB $,$ \angle 2 = \frac{1}{3} \angle CBD $,$ \angle CBD = \angle C + \angle CAB $,$ \therefore 3 \angle 2 = 60^{\circ} + 3 \angle 1 $,即 $ \angle 2 = 20^{\circ} + \angle 1 $。$ \because \angle 2 = \angle 1 + \angle E_1 $,$ \therefore 20^{\circ} + \angle 1 = \angle 1 + \angle E_1 $。$ \therefore \angle E_1 = 20^{\circ} $。
(2) 由题意,得 $ \angle E_1AD = \frac{1}{3} \angle CAB $,$ \angle E_1BD = \frac{1}{3} \angle CBD $,$ \therefore $ 设 $ \angle E_1AD = \alpha $,$ \angle E_1BD = \beta $,则 $ \angle CAB = 3 \alpha $,$ \angle CBD = 3 \beta $。由三角形的外角性质,得 $ \beta = \alpha + \angle E_1 $,$ 3 \beta = 3 \alpha + \angle C $,$ \therefore \angle E_1 = \frac{1}{3} \angle C $。同理,可得 $ \angle E_2 = \frac{1}{3} \angle E_1 = (\frac{1}{3})^2 \angle C $,$ \cdots $,$ \angle E_n = (\frac{1}{3})^n \angle C $。$ \therefore \angle E_n = (\frac{1}{3})^n \angle C $。
(1) $ 20^{\circ} $。解析:如图,依题意,得 $ \angle C = 60^{\circ} $,$ \angle 1 = \frac{1}{3} \angle CAB $,$ \angle 2 = \frac{1}{3} \angle CBD $,$ \angle CBD = \angle C + \angle CAB $,$ \therefore 3 \angle 2 = 60^{\circ} + 3 \angle 1 $,即 $ \angle 2 = 20^{\circ} + \angle 1 $。$ \because \angle 2 = \angle 1 + \angle E_1 $,$ \therefore 20^{\circ} + \angle 1 = \angle 1 + \angle E_1 $。$ \therefore \angle E_1 = 20^{\circ} $。
(2) 由题意,得 $ \angle E_1AD = \frac{1}{3} \angle CAB $,$ \angle E_1BD = \frac{1}{3} \angle CBD $,$ \therefore $ 设 $ \angle E_1AD = \alpha $,$ \angle E_1BD = \beta $,则 $ \angle CAB = 3 \alpha $,$ \angle CBD = 3 \beta $。由三角形的外角性质,得 $ \beta = \alpha + \angle E_1 $,$ 3 \beta = 3 \alpha + \angle C $,$ \therefore \angle E_1 = \frac{1}{3} \angle C $。同理,可得 $ \angle E_2 = \frac{1}{3} \angle E_1 = (\frac{1}{3})^2 \angle C $,$ \cdots $,$ \angle E_n = (\frac{1}{3})^n \angle C $。$ \therefore \angle E_n = (\frac{1}{3})^n \angle C $。
查看更多完整答案,请扫码查看