2025年拔尖特训八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年拔尖特训八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年拔尖特训八年级数学上册人教版》

1. 如图,在$\triangle ABE$中,$BA=BE$,$F$为$AE$的中点. 若$\angle ABC=34^{\circ}$,$\angle C=50^{\circ}$,则$\angle ADB$的度数为(
C

第1题
A. $60^{\circ}$
B. $63^{\circ}$
C. $67^{\circ}$
D. $70^{\circ}$
答案: C
2. 如图,在$\triangle ABC$中,$AB=AC$,$AD\perp BC$于点$D$,$DE\perp AB$于点$E$,$BF\perp AC$于点$F$. 若$DE=3\mathrm{cm}$,则$BF$的长为(
B

第2题
A. $4.8\mathrm{cm}$
B. $6\mathrm{cm}$
C. $5\mathrm{cm}$
D. $6.4\mathrm{cm}$
答案: B
3. 如图,$AB=AC$,$D$是$\triangle ABC$内一点,$\angle D=110^{\circ}$,$\angle 1=\angle 2$,则$\angle A$的度数为
$40^{\circ}$
.
答案: $40^{\circ}$ 解析:$\because \angle D = 110^{\circ}$,$\therefore \angle 1+\angle BCD = 180^{\circ}-\angle D = 70^{\circ}$。$\because \angle 1=\angle 2$,$\therefore \angle 2+\angle BCD=\angle ACB = 70^{\circ}$。$\because AB = AC$,$\therefore \angle ABC=\angle ACB = 70^{\circ}$。$\therefore \angle A = 180^{\circ}-70^{\circ}-70^{\circ}=40^{\circ}$。
4. (2025·渭南大荔期中)如图,在$\triangle ABC$中,点$D$在$AC$上,且$BD=BC=AD$,$\angle DBC=20^{\circ}$,求$\angle A$,$\angle C$,$\angle ABC$的度数.
第4题
答案: $\because BD = BC$,$\angle DBC = 20^{\circ}$,$\therefore \angle C=\angle BDC=\frac{1}{2}(180^{\circ}-\angle DBC)=80^{\circ}$。$\because AD = BD$,$\therefore \angle A=\angle ABD$。$\because \angle BDC=\angle A+\angle ABD$,$\therefore \angle A=\angle ABD=\frac{1}{2}\angle BDC = 40^{\circ}$。$\therefore \angle ABC=\angle ABD+\angle DBC = 60^{\circ}$。
5. 借助如图所示的三等分角仪能三等分任意一个角. 这个三等分角仪由两根有槽的棒$OA$,$OB$组成,两根棒在点$O$处相连并可绕点$O$转动,点$C$固定,$OC=CD=DE$,点$D$,$E$可在槽中滑动. 若$\angle BDE=78^{\circ}$,则$\angle CDE$的度数为(
C

第5题
A. $52^{\circ}$
B. $66^{\circ}$
C. $76^{\circ}$
D. $78^{\circ}$
答案: C 解析:$\because OC = CD = DE$,$\therefore \angle O=\angle ODC$,$\angle DCE=\angle DEC$。$\therefore \angle DCE=\angle O+\angle ODC = 2\angle ODC$。$\because \angle O+\angle OED = 3\angle ODC=\angle BDE = 78^{\circ}$,$\therefore \angle ODC = 26^{\circ}$。$\because \angle CDE+\angle ODC = 180^{\circ}-\angle BDE = 102^{\circ}$,$\therefore \angle CDE = 102^{\circ}-\angle ODC = 76^{\circ}$。
6. 如图,在$\triangle ABC$中,$\angle ACB=90^{\circ}$,$AC=AN$,$BC=BM$,则$\angle MCN$的度数为(
B

第6题
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. $55^{\circ}$
答案: B 解析:设$\angle BMC = x$,$\angle ANC = y$。$\because BC = BM$,$\therefore \angle BCM=\angle BMC = x$。$\therefore \angle B = 180^{\circ}-2x$。$\because AC = AN$,$\therefore \angle ACN=\angle ANC = y$。$\therefore \angle A = 180^{\circ}-2y$。$\because \triangle ABC$为直角三角形,$\angle ACB = 90^{\circ}$,$\therefore \angle A+\angle B = 90^{\circ}$,即$180^{\circ}-2y + 180^{\circ}-2x = 90^{\circ}$。$\therefore x + y = 135^{\circ}$。$\therefore \angle BCM+\angle ACN = 135^{\circ}$。$\therefore \angle MCN=\angle BCM+\angle ACN-\angle ACB = 135^{\circ}-90^{\circ}=45^{\circ}$。
7. 如图,在$\triangle ABC$中,$AB=AC$,$\angle BAC=40^{\circ}$,$AD$是边$BC$上的高. 线段$AC$的垂直平分线交$AD$于点$E$,交$AC$于点$F$,连接$BE$,则$\angle EBD$的度数为______.
第7题
答案:
$50^{\circ}$ 解析:如图,连接$CE$。$\because AB = AC$,$AD$是边$BC$上的高,$\angle BAC = 40^{\circ}$,$\therefore BD = CD$,$\angle ABC=\frac{1}{2}(180^{\circ}-\angle BAC)=70^{\circ}$,$\angle BAE=\frac{1}{2}\angle BAC = 20^{\circ}$。$\therefore AD$为$BC$的垂直平分线。$\because$点$E$在$AD$上,$\therefore BE = CE$。又$\because$线段$AC$的垂直平分线交$AD$于点$E$,交$AC$于点$F$,$\therefore AE = CE$。$\therefore AE = BE$。$\therefore \angle ABE=\angle BAE = 20^{\circ}$。$\therefore \angle EBD=\angle ABC-\angle ABE = 50^{\circ}$。
c第7题
8. 小丽从一张等腰三角形纸片$ABC(AB=AC)$中恰好剪出五个如图所示的小等腰三角形,其中$BC=BD$,$EC=EF=FG=DG=DA$,则$\angle B$的度数为______
$67.5^{\circ}$
.
答案: $67.5^{\circ}$ 解析:设$\angle ECF = x$。$\because EC = EF$,$\therefore \angle EFC=\angle ECF = x$。$\therefore \angle GEF = 2x$。$\because EF = GF$,$\therefore \angle FGE=\angle GEF = 2x$。$\therefore \angle DFG=\angle FGC+\angle GCF = 3x$。$\because DG = GF$,$\therefore \angle GDF=\angle DFG = 3x$。$\therefore \angle AGD=\angle GDC+\angle GCD = 4x$。$\because DG = DA$,$\therefore \angle A=\angle AGD = 4x$。$\therefore \angle BDC=\angle A+\angle DCA = 5x$。$\because BC = BD$,$\therefore \angle BDC=\angle BCD = 5x$。$\therefore \angle ACB=\angle BCD+\angle DCA = 6x$。$\because AB = AC$,$\therefore \angle B=\angle ACB = 6x$。$\because \angle A+\angle B+\angle ACB = 180^{\circ}$,$\therefore 4x + 6x + 6x = 180^{\circ}$,解得$x = 11.25^{\circ}$。$\therefore \angle B = 67.5^{\circ}$。
9. 如图①,$C$为线段$AB$上一点,分别以$AC$,$BC$为底边,在$AB$的同侧作等腰三角形$ACD$和等腰三角形$BCE$,且$\angle A=\angle EBC$. 在线段$EC$上取一点$F$,使$EF=AD$,连接$BF$,$DE$.
(1)判断$DE$与$FB$之间的数量关系,并说明理由.
(2)如图②,若$\angle A=\alpha$,延长$BF$交$DE$于点$G$,探究$\angle BGE$与$\angle GBC$之间的数量关系,并说明理由.
第9题
答案:
(1)$DE = FB$。理由:$\because \triangle ACD$,$\triangle BCE$分别是以$AC$,$BC$为底边的等腰三角形,$\therefore \angle A=\angle DCA$,$\angle ECB=\angle EBC$,$CE = BE$,$AD = CD$。$\because EF = AD$,$\therefore EF = CD$。$\because \angle A=\angle EBC$,$\therefore \angle A=\angle ECB=\angle DCA=\angle EBC$。$\therefore AD// CE$,$DC// BE$。$\therefore \angle ADC=\angle DCE$,$\angle DCE=\angle CEB$。在$\triangle DCE$和$\triangle FEB$中,$\left\{\begin{array}{l}CD = EF\\\angle DCE=\angle FEB\\CE = EB\end{array}\right.$,$\therefore \triangle DCE\cong\triangle FEB$。$\therefore DE = FB$。
(2)$\angle BGE = 2\angle GBC$。理由:由
(1),可知$\angle A=\angle ECB=\angle CBE=\alpha$,$\triangle DCE\cong\triangle FEB$。$\therefore \angle DEC=\angle GBE$。$\because \angle GBE=\angle CBE-\angle GBC=\alpha-\angle GBC$,$\therefore \angle DEC=\alpha-\angle GBC$。$\because \angle BGE+\angle DEC+\angle EFG = 180^{\circ}$,$\angle ECB+\angle GBC+\angle CFB = 180^{\circ}$,$\angle EFG=\angle CFB$,$\therefore \angle BGE+\angle DEC=\angle ECB+\angle GBC$。$\therefore \angle BGE+\alpha-\angle GBC=\alpha+\angle GBC$。$\therefore \angle BGE = 2\angle GBC$。

查看更多完整答案,请扫码查看

关闭