第21页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
10. 如图,在$\triangle ABC$中,点$D$,$E$分别在边$AB$,$BC$上,连接$AE$,$DE$. 若$\triangle ADE≌\triangle BDE$,$AC:AB:BC=2:3:4$,且$\triangle ABC$的周长比$\triangle AEC$的周长大$6$,求$\triangle AEC$的周长.

答案:
$\because \triangle ADE \cong \triangle BDE$,
$\therefore AE = BE$。
$\therefore C_{\triangle AEC} = AE + EC + AC = BE + EC + AC = BC + AC$。
$\because AC:AB:BC = 2:3:4$,
$\therefore$ 设 $AC = 2x$,则 $AB = 3x$,$BC = 4x$。
$\because \triangle ABC$ 的周长比 $\triangle AEC$ 的周长大 6,
$\therefore C_{\triangle ABC} - C_{\triangle AEC} = 6$。
$\therefore (AB + BC + AC) - (BC + AC) = 6$。
$\therefore AB = 3x = 6$,解得 $x = 2$。
$\therefore AC = 2x = 4$,$BC = 4x = 8$。
$\therefore C_{\triangle AEC} = BC + AC = 8 + 4 = 12$。
$\therefore AE = BE$。
$\therefore C_{\triangle AEC} = AE + EC + AC = BE + EC + AC = BC + AC$。
$\because AC:AB:BC = 2:3:4$,
$\therefore$ 设 $AC = 2x$,则 $AB = 3x$,$BC = 4x$。
$\because \triangle ABC$ 的周长比 $\triangle AEC$ 的周长大 6,
$\therefore C_{\triangle ABC} - C_{\triangle AEC} = 6$。
$\therefore (AB + BC + AC) - (BC + AC) = 6$。
$\therefore AB = 3x = 6$,解得 $x = 2$。
$\therefore AC = 2x = 4$,$BC = 4x = 8$。
$\therefore C_{\triangle AEC} = BC + AC = 8 + 4 = 12$。
11. 如图,$\triangle BKC≌\triangle BKE≌\triangle DKC$,$BE$与$KD$交于点$G$,$KE$与$CD$交于点$P$,$BE$与$CD$交于点$A$,$\angle BKC=135^{\circ}$,$\angle E=22^{\circ}$,求$\angle KPD$的度数.

答案:
$\because \triangle BKC \cong \triangle BKE \cong \triangle DKC$,$\angle BKC = 135^{\circ}$,$\angle E = 22^{\circ}$,
$\therefore \angle DCK = \angle E = 22^{\circ}$,$\angle BKE = \angle DKC = \angle BKC = 135^{\circ}$。
$\therefore \angle DKP = \angle BKC + \angle DKC + \angle BKE - 360^{\circ} = 45^{\circ}$。
$\therefore \angle EKC = \angle DKC - \angle DKE = 135^{\circ} - 45^{\circ} = 90^{\circ}$。
$\therefore \angle KPD = \angle PCK + \angle PKC = 22^{\circ} + 90^{\circ} = 112^{\circ}$。
$\therefore \angle DCK = \angle E = 22^{\circ}$,$\angle BKE = \angle DKC = \angle BKC = 135^{\circ}$。
$\therefore \angle DKP = \angle BKC + \angle DKC + \angle BKE - 360^{\circ} = 45^{\circ}$。
$\therefore \angle EKC = \angle DKC - \angle DKE = 135^{\circ} - 45^{\circ} = 90^{\circ}$。
$\therefore \angle KPD = \angle PCK + \angle PKC = 22^{\circ} + 90^{\circ} = 112^{\circ}$。
12. 如图,在锐角三角形$ABC$中,$D$,$E$分别是边$AB$,$AC$上的点,$\triangle ADC≌\triangle ADC'$,$\triangle AEB≌\triangle AEB'$,且$C'D// EB'// BC$,$BE$,$CD$交于点$F$. 若$\angle BAC=\alpha$,$\angle BFC=\beta$,则 ( )

A. $2\alpha+\beta=180^{\circ}$
B. $2\beta-\alpha=180^{\circ}$
C. $\alpha+\beta=150^{\circ}$
D. $\beta-\alpha=60^{\circ}$
A. $2\alpha+\beta=180^{\circ}$
B. $2\beta-\alpha=180^{\circ}$
C. $\alpha+\beta=150^{\circ}$
D. $\beta-\alpha=60^{\circ}$
答案:
A 解析:如图,延长 $C'D$ 交 $AC$ 于点 $M$。$\because \triangle ADC \cong \triangle ADC'$,$\triangle AEB \cong \triangle AEB'$,$\therefore \angle ACD = \angle C'$,$\angle ABE = \angle B'$,$\angle CAD = \angle C'AD = \angle B'AE = \alpha$。$\therefore \angle C'MC = \angle C' + \angle C'AM = \angle C' + 2\alpha$。
$\because C'D // EB'$,$\therefore \angle AEB' = \angle C'MC$。
$\because \angle AEB' = 180^{\circ} - \angle B' - \angle B'AE = 180^{\circ} - \angle B' - \alpha$,$\therefore \angle C' + 2\alpha = 180^{\circ} - \angle B' - \alpha$。$\therefore \angle C' + \angle B' = 180^{\circ} - 3\alpha$。$\because \angle BFC = \beta = \angle BDF + \angle DBF$,$\angle BDF = \angle DAC + \angle ACD$,
$\therefore \angle BFC = \beta = \angle DAC + \angle ACD + \angle B' = \alpha + \angle ACD + \angle B' = \alpha + \angle C' + \angle B' = \alpha + 180^{\circ} - 3\alpha = 180^{\circ} - 2\alpha$,即 $2\alpha + \beta = 180^{\circ}$。
A 解析:如图,延长 $C'D$ 交 $AC$ 于点 $M$。$\because \triangle ADC \cong \triangle ADC'$,$\triangle AEB \cong \triangle AEB'$,$\therefore \angle ACD = \angle C'$,$\angle ABE = \angle B'$,$\angle CAD = \angle C'AD = \angle B'AE = \alpha$。$\therefore \angle C'MC = \angle C' + \angle C'AM = \angle C' + 2\alpha$。
$\because C'D // EB'$,$\therefore \angle AEB' = \angle C'MC$。
$\because \angle AEB' = 180^{\circ} - \angle B' - \angle B'AE = 180^{\circ} - \angle B' - \alpha$,$\therefore \angle C' + 2\alpha = 180^{\circ} - \angle B' - \alpha$。$\therefore \angle C' + \angle B' = 180^{\circ} - 3\alpha$。$\because \angle BFC = \beta = \angle BDF + \angle DBF$,$\angle BDF = \angle DAC + \angle ACD$,
$\therefore \angle BFC = \beta = \angle DAC + \angle ACD + \angle B' = \alpha + \angle ACD + \angle B' = \alpha + \angle C' + \angle B' = \alpha + 180^{\circ} - 3\alpha = 180^{\circ} - 2\alpha$,即 $2\alpha + \beta = 180^{\circ}$。
13. 如图,$\triangle ABE≌\triangle ADC≌\triangle ABC$,若$\angle 1:\angle 2:\angle 3=13:3:2$,$CD$与$BE$交于点$O$,求$\angle EOC$的度数.

答案:
设 $AE$ 与 $DC$ 交于点 $P$。
$\because \angle 1:\angle 2:\angle 3 = 13:3:2$,
$\therefore$ 易得 $\angle 1 = 130^{\circ}$,$\angle 2 = 30^{\circ}$,$\angle 3 = 20^{\circ}$。
$\because \triangle ABE \cong \triangle ADC \cong \triangle ABC$,
$\therefore \angle DCA = \angle E = \angle 3 = 20^{\circ}$,$\angle EAB = \angle 1 = 130^{\circ}$。
$\therefore \angle PAC = 360^{\circ} - 2\angle 1 = 100^{\circ}$。
$\therefore \angle EPD = \angle APC = 180^{\circ} - \angle PAC - \angle DCA = 60^{\circ}$。
$\therefore \angle EOC = 180^{\circ} - \angle EPD - \angle E = 180^{\circ} - 60^{\circ} - 20^{\circ} = 100^{\circ}$。
$\because \angle 1:\angle 2:\angle 3 = 13:3:2$,
$\therefore$ 易得 $\angle 1 = 130^{\circ}$,$\angle 2 = 30^{\circ}$,$\angle 3 = 20^{\circ}$。
$\because \triangle ABE \cong \triangle ADC \cong \triangle ABC$,
$\therefore \angle DCA = \angle E = \angle 3 = 20^{\circ}$,$\angle EAB = \angle 1 = 130^{\circ}$。
$\therefore \angle PAC = 360^{\circ} - 2\angle 1 = 100^{\circ}$。
$\therefore \angle EPD = \angle APC = 180^{\circ} - \angle PAC - \angle DCA = 60^{\circ}$。
$\therefore \angle EOC = 180^{\circ} - \angle EPD - \angle E = 180^{\circ} - 60^{\circ} - 20^{\circ} = 100^{\circ}$。
查看更多完整答案,请扫码查看