第18页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
1. 把12 cm长的铁丝截成三段,首尾顺次相接,围成三边长均不相等的三角形,且使三边长均为整数,截法有(
A. 一种
B. 两种
C. 三种
D. 四种
A
)A. 一种
B. 两种
C. 三种
D. 四种
答案:
1. A
2. (2025·抚顺期中)在$Rt\triangle ABC$中,$\angle C=90^{\circ}$,$\angle A:\angle B=1:2$,则两个锐角的度数为(
A. $30^{\circ}$和$60^{\circ}$
B. $45^{\circ}$和$45^{\circ}$
C. $40^{\circ}$和$80^{\circ}$
D. 以上说法都不对
A
)A. $30^{\circ}$和$60^{\circ}$
B. $45^{\circ}$和$45^{\circ}$
C. $40^{\circ}$和$80^{\circ}$
D. 以上说法都不对
答案:
2. A
3. 如图,$AD$是$\angle BAC$的平分线,$\angle ADB=100^{\circ}$,$\angle DBC=25^{\circ}$,$\angle C=53^{\circ}$,则$\angle DBA$的度数为()

A. $52^{\circ}$
B. $42^{\circ}$
C. $58^{\circ}$
D. $32^{\circ}$
A. $52^{\circ}$
B. $42^{\circ}$
C. $58^{\circ}$
D. $32^{\circ}$
答案:
3. C 解析:如图,连接$CD$并延长,交$AB$于点$E$.$\because \angle BDE$是$\triangle BCD$的外角,$\angle ADE$是$\triangle ACD$的外角,$\therefore \angle BDE = \angle DBC + \angle BCD$,$\angle ADE = \angle CAD + \angle ACD$.$\therefore \angle BDE + \angle ADE = \angle DBC + \angle BCD + \angle CAD + \angle ACD$,即$\angle ADB = \angle DBC + \angle CAD + \angle ACB$.$\therefore \angle CAD = \angle ADB - \angle DBC - \angle ACB = 100^{\circ} - 25^{\circ} - 53^{\circ} = 22^{\circ}$.$\because AD$是$\angle BAC$的平分线,$\therefore \angle BAD = \angle CAD = 22^{\circ}$.在$\triangle ABD$中,$\angle BAD = 22^{\circ}$,$\angle ADB = 100^{\circ}$,$\therefore \angle DBA = 180^{\circ} - \angle BAD - \angle ADB = 180^{\circ} - 22^{\circ} - 100^{\circ} = 58^{\circ}$.
3. C 解析:如图,连接$CD$并延长,交$AB$于点$E$.$\because \angle BDE$是$\triangle BCD$的外角,$\angle ADE$是$\triangle ACD$的外角,$\therefore \angle BDE = \angle DBC + \angle BCD$,$\angle ADE = \angle CAD + \angle ACD$.$\therefore \angle BDE + \angle ADE = \angle DBC + \angle BCD + \angle CAD + \angle ACD$,即$\angle ADB = \angle DBC + \angle CAD + \angle ACB$.$\therefore \angle CAD = \angle ADB - \angle DBC - \angle ACB = 100^{\circ} - 25^{\circ} - 53^{\circ} = 22^{\circ}$.$\because AD$是$\angle BAC$的平分线,$\therefore \angle BAD = \angle CAD = 22^{\circ}$.在$\triangle ABD$中,$\angle BAD = 22^{\circ}$,$\angle ADB = 100^{\circ}$,$\therefore \angle DBA = 180^{\circ} - \angle BAD - \angle ADB = 180^{\circ} - 22^{\circ} - 100^{\circ} = 58^{\circ}$.
4. 如图,在$\triangle ABC$中,$AD$是$\triangle ABC$的角平分线,点$F$在射线$AD$上,$FE\perp BC$于点$E$,$\angle C=80^{\circ}$,$\angle B=36^{\circ}$,则$\angle F$的度数为
$22^{\circ}$
。
答案:
4. $22^{\circ}$ 解析:在$\triangle ABC$中,$\because \angle B = 36^{\circ}$,$\angle C = 80^{\circ}$,$\therefore \angle BAC = 180^{\circ} - \angle B - \angle C = 180^{\circ} - 36^{\circ} - 80^{\circ} = 64^{\circ}$.$\because AD$平分$\angle BAC$,$\therefore \angle BAD = \angle CAD = \frac{1}{2}\angle BAC = \frac{1}{2}×64^{\circ} = 32^{\circ}$.$\because FE \perp BC$,$\therefore \angle DEF = 90^{\circ}$.$\because \angle ADB$是$\triangle ACD$的外角,$\angle ADB$是$\triangle DEF$的外角,$\therefore \angle ADB = \angle CAD + \angle C = \angle F + \angle DEF$,即$32^{\circ} + 80^{\circ} = \angle F + 90^{\circ}$.$\therefore \angle F = 22^{\circ}$.
5. (2024·商丘睢阳期末)如图,在$Rt\triangle ABC$中,$\angle ACB=90^{\circ}$,点$D$在边$AB$上,将$\triangle CBD$沿$CD$折叠,使点$B$恰好落在边$AC$上的点$E$处。若$\angle A=25^{\circ}$,则$\angle CDE=$
$70^{\circ}$
。
答案:
5. $70^{\circ}$ 解析:$\because$将$\triangle CBD$沿$CD$折叠,使点$B$恰好落在边$AC$上的点$E$处,$\angle ACB = 90^{\circ}$,$\therefore \angle BCD = \angle ECD = \frac{1}{2}\angle ACB = 45^{\circ}$,$\angle B = \angle CED$.$\because \angle A = 25^{\circ}$,$\therefore \angle B = 90^{\circ} - \angle A = 90^{\circ} - 25^{\circ} = 65^{\circ}$.$\therefore \angle CED = 65^{\circ}$.$\therefore \angle CDE = 180^{\circ} - \angle ECD - \angle CED = 180^{\circ} - 45^{\circ} - 65^{\circ} = 70^{\circ}$.
6. 已知$\triangle ABC$的两边长分别为3和7,第三边的长是关于$x$的方程$\frac{x+a}{2}=x+1$的解,则$a$的取值范围是
$6 < a < 12$
。
答案:
6. $6 < a < 12$
7. (2024·济南商河期末改编)如图,在$\triangle ABC$中,$BE$,$CE$,$CD$分别平分$\angle ABC$,$\angle ACB$,$\angle ACF$,$AB// CD$,有下列结论:①$\angle BDC=\angle BAC$;②$\angle BEC=90^{\circ}+\angle ABD$;③$\angle CAB=\angle CBA$。其中,正确的为

②③
(填序号)。
答案:
7. ②③ 解析:$\because CD$平分$\angle ACF$,$\angle ACF = \angle ABC + \angle BAC$,$\therefore \angle ACD = \angle DCF = \frac{1}{2}\angle ACF = \frac{1}{2}\angle ABC + \frac{1}{2}\angle BAC$.$\because BE$平分$\angle ABC$,$\therefore \angle ABD = \angle CBD = \frac{1}{2}\angle ABC$.$\therefore \angle DCF = \angle DBC + \angle BDC = \frac{1}{2}\angle ABC + \angle BDC$.$\therefore \frac{1}{2}\angle BAC = \angle BDC$,即$\angle BAC = 2\angle BDC$.故①错误.$\because CE$平分$\angle ACB$,$\therefore \angle ACE = \frac{1}{2}\angle ACB$.$\because \angle ACB + \angle ACF = 180^{\circ}$,$\therefore \angle ACE + \angle ACD = 90^{\circ}$,即$\angle ECD = 90^{\circ}$.$\therefore \angle BEC = \angle ECD + \angle CDB = 90^{\circ} + \angle CDB$.$\because CD // AB$,$\therefore \angle CDB = \angle ABD$.$\therefore \angle BEC = 90^{\circ} + \angle ABD$.故②正确.$\because BD$平分$\angle CBA$,$\therefore \angle CBA = 2\angle ABD = 2\angle CDB$.$\because \angle BAC = 2\angle BDC$,$\therefore \angle CAB = \angle CBA$.故③正确.综上所述,正确的为②③.
8. (2025·商洛商南段考)已知$a$,$b$,$c$分别为$\triangle ABC$的三边长,且满足$a+b=3c-2$,$a-b=2c-6$。
(1)求$c$的取值范围。
(2)若$\triangle ABC$的周长为18,求$c$的值。
(1)求$c$的取值范围。
(2)若$\triangle ABC$的周长为18,求$c$的值。
答案:
8.
(1)$\because a$,$b$,$c$分别为$\triangle ABC$的三边长,$a + b = 3c - 2$,$a - b = 2c - 6$,$\therefore \begin{cases}3c - 2 > c\\|2c - 6| < c\end{cases}$,即$\begin{cases}2c > 2\\ - c < 2c - 6 < c\end{cases}$,解得$2 < c < 6$.
(2)$\because \triangle ABC$的周长为$18$,$a + b = 3c - 2$,$\therefore a + b + c = 4c - 2 = 18$,解得$c = 5$.
(1)$\because a$,$b$,$c$分别为$\triangle ABC$的三边长,$a + b = 3c - 2$,$a - b = 2c - 6$,$\therefore \begin{cases}3c - 2 > c\\|2c - 6| < c\end{cases}$,即$\begin{cases}2c > 2\\ - c < 2c - 6 < c\end{cases}$,解得$2 < c < 6$.
(2)$\because \triangle ABC$的周长为$18$,$a + b = 3c - 2$,$\therefore a + b + c = 4c - 2 = 18$,解得$c = 5$.
9. 【模型规律】如图①,延长$CO$交$AB$于点$D$,则$\angle BOC=\angle 1+\angle B=\angle A+\angle C+\angle B$。因为凹四边形答案讲解$ABOC$形如箭头,其四角具有“$\angle BOC=\angle A+\angle B+\angle C$”这个规律,所以我们把这个模型叫作“箭头四角形”。
【模型应用】(1)①如图②,$\angle A=60^{\circ}$,$\angle B=20^{\circ}$,$\angle C=30^{\circ}$,则$\angle BOC$的度数为
②如图③,$\angle A+\angle B+\angle C+\angle D+\angle E+\angle F$的度数为
(2)①如图④,$\angle ABO$,$\angle ACO$的平分线$BO_1$,$CO_1$交于点$O_1$。若$\angle BOC=120^{\circ}$,$\angle A=50^{\circ}$,则$\angle BO_1C$的度数为
②如图⑤,$\angle ABO$,$\angle BAC$的平分线$BD$,$AD$交于点$D$。若$\angle BOC=120^{\circ}$,$\angle C=44^{\circ}$,则$\angle ADB$的度数为
③如图⑥,$\angle BAC$,$\angle BOC$的平分线$AD$,$OD$交于点$D$,求$\angle B$,$\angle C$,$\angle D$之间的数量关系。

【模型应用】(1)①如图②,$\angle A=60^{\circ}$,$\angle B=20^{\circ}$,$\angle C=30^{\circ}$,则$\angle BOC$的度数为
$110^{\circ}$
。②如图③,$\angle A+\angle B+\angle C+\angle D+\angle E+\angle F$的度数为
$260^{\circ}$
。(2)①如图④,$\angle ABO$,$\angle ACO$的平分线$BO_1$,$CO_1$交于点$O_1$。若$\angle BOC=120^{\circ}$,$\angle A=50^{\circ}$,则$\angle BO_1C$的度数为
$85^{\circ}$
。②如图⑤,$\angle ABO$,$\angle BAC$的平分线$BD$,$AD$交于点$D$。若$\angle BOC=120^{\circ}$,$\angle C=44^{\circ}$,则$\angle ADB$的度数为
$142^{\circ}$
。③如图⑥,$\angle BAC$,$\angle BOC$的平分线$AD$,$OD$交于点$D$,求$\angle B$,$\angle C$,$\angle D$之间的数量关系。
$\because$易得$\angle DOC + \angle D = \angle DAC + \angle C$,$\therefore \angle D = \angle DAC + \angle C - \angle DOC$.$\because AD$,$OD$分别是$\angle BAC$,$\angle BOC$的平分线,$\therefore \angle DAC = \frac{1}{2}\angle BAC$,$\angle DOC = \frac{1}{2}\angle BOC = \frac{1}{2}(\angle BAC + \angle B + \angle C)$.$\therefore \angle D = \frac{1}{2}\angle BAC + \angle C - \frac{1}{2}(\angle BAC + \angle B + \angle C) = \frac{1}{2}\angle C - \frac{1}{2}\angle B = \frac{1}{2}(\angle C - \angle B)$
答案:
9.
(1)①$110^{\circ}$.②$260^{\circ}$.
(2)①$85^{\circ}$.②$142^{\circ}$.③$\because$易得$\angle DOC + \angle D = \angle DAC + \angle C$,$\therefore \angle D = \angle DAC + \angle C - \angle DOC$.$\because AD$,$OD$分别是$\angle BAC$,$\angle BOC$的平分线,$\therefore \angle DAC = \frac{1}{2}\angle BAC$,$\angle DOC = \frac{1}{2}\angle BOC = \frac{1}{2}(\angle BAC + \angle B + \angle C)$.$\therefore \angle D = \frac{1}{2}\angle BAC + \angle C - \frac{1}{2}(\angle BAC + \angle B + \angle C) = \frac{1}{2}\angle C - \frac{1}{2}\angle B = \frac{1}{2}(\angle C - \angle B)$.
(1)①$110^{\circ}$.②$260^{\circ}$.
(2)①$85^{\circ}$.②$142^{\circ}$.③$\because$易得$\angle DOC + \angle D = \angle DAC + \angle C$,$\therefore \angle D = \angle DAC + \angle C - \angle DOC$.$\because AD$,$OD$分别是$\angle BAC$,$\angle BOC$的平分线,$\therefore \angle DAC = \frac{1}{2}\angle BAC$,$\angle DOC = \frac{1}{2}\angle BOC = \frac{1}{2}(\angle BAC + \angle B + \angle C)$.$\therefore \angle D = \frac{1}{2}\angle BAC + \angle C - \frac{1}{2}(\angle BAC + \angle B + \angle C) = \frac{1}{2}\angle C - \frac{1}{2}\angle B = \frac{1}{2}(\angle C - \angle B)$.
查看更多完整答案,请扫码查看