第17页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
(1)若$\angle 1=20^{\circ}$,$\angle 2=30^{\circ}$,$\angle BEC=100^{\circ}$,则$\angle BDC$的度数为
(2)若$BE$平分$\angle ABD$,$CE$平分$\angle ACD$,$BE$与$CE$相交于点$E$,请写出$\angle BDC$,$\angle BEC$和$\angle BAC$之间的数量关系,并说明理由。
$\angle BDC + \angle BAC = 2\angle BEC$
理由:由题意,得$\angle BDC = \angle BEC + \angle 1 + \angle 2$①,$\angle BEC = \angle BAC + \angle ABE + \angle ACE$②.$\because BE$平分$\angle ABD$,$CE$平分$\angle ACD$,$\therefore \angle ABE = \angle 1$,$\angle ACE = \angle 2$.①$ - $②,得$\angle BDC - \angle BEC = \angle BEC - \angle BAC$.$\therefore \angle BDC + \angle BAC = 2\angle BEC$.
(3)如图②,若$\angle 1=\frac{1}{3}\angle ABD$,$\angle 2=\frac{1}{3}\angle ACD$,试探究$\angle BDC$,$\angle BEC$和$\angle BAC$之间的数量关系,并说明理由。
$2\angle BDC + \angle BAC = 3\angle BEC$
理由:$\because \angle 1 = \frac{1}{3}\angle ABD$,$\angle 2 = \frac{1}{3}\angle ACD$,$\therefore \angle ABE = \frac{2}{3}\angle ABD$,$\angle ACE = \frac{2}{3}\angle ACD$.$\because$由题意知,$\angle BEC = \angle BAC + \angle ABE + \angle ACE = \angle BAC + \frac{2}{3}\angle ABD + \frac{2}{3}\angle ACD$①,$\angle BDC = \angle BAC + \angle ABD + \angle ACD$②,$\therefore$②$ + $①,得$\angle BDC + \angle BEC = 2\angle BAC + \frac{5}{3}\angle ABD + \frac{5}{3}\angle ACD$.$\therefore 3\angle BDC + 3\angle BEC = 6\angle BAC + 5\angle ABD + 5\angle ACD$.$\therefore 3\angle BDC + 3\angle BEC = \angle BAC + 5(\angle BAC + \angle ABD + \angle ACD)$.$\therefore 3\angle BDC + 3\angle BEC = \angle BAC + 5\angle BDC$.$\therefore 2\angle BDC + \angle BAC = 3\angle BEC$.
$150^{\circ}$
。(2)若$BE$平分$\angle ABD$,$CE$平分$\angle ACD$,$BE$与$CE$相交于点$E$,请写出$\angle BDC$,$\angle BEC$和$\angle BAC$之间的数量关系,并说明理由。
$\angle BDC + \angle BAC = 2\angle BEC$
理由:由题意,得$\angle BDC = \angle BEC + \angle 1 + \angle 2$①,$\angle BEC = \angle BAC + \angle ABE + \angle ACE$②.$\because BE$平分$\angle ABD$,$CE$平分$\angle ACD$,$\therefore \angle ABE = \angle 1$,$\angle ACE = \angle 2$.①$ - $②,得$\angle BDC - \angle BEC = \angle BEC - \angle BAC$.$\therefore \angle BDC + \angle BAC = 2\angle BEC$.
(3)如图②,若$\angle 1=\frac{1}{3}\angle ABD$,$\angle 2=\frac{1}{3}\angle ACD$,试探究$\angle BDC$,$\angle BEC$和$\angle BAC$之间的数量关系,并说明理由。
$2\angle BDC + \angle BAC = 3\angle BEC$
理由:$\because \angle 1 = \frac{1}{3}\angle ABD$,$\angle 2 = \frac{1}{3}\angle ACD$,$\therefore \angle ABE = \frac{2}{3}\angle ABD$,$\angle ACE = \frac{2}{3}\angle ACD$.$\because$由题意知,$\angle BEC = \angle BAC + \angle ABE + \angle ACE = \angle BAC + \frac{2}{3}\angle ABD + \frac{2}{3}\angle ACD$①,$\angle BDC = \angle BAC + \angle ABD + \angle ACD$②,$\therefore$②$ + $①,得$\angle BDC + \angle BEC = 2\angle BAC + \frac{5}{3}\angle ABD + \frac{5}{3}\angle ACD$.$\therefore 3\angle BDC + 3\angle BEC = 6\angle BAC + 5\angle ABD + 5\angle ACD$.$\therefore 3\angle BDC + 3\angle BEC = \angle BAC + 5(\angle BAC + \angle ABD + \angle ACD)$.$\therefore 3\angle BDC + 3\angle BEC = \angle BAC + 5\angle BDC$.$\therefore 2\angle BDC + \angle BAC = 3\angle BEC$.
答案:
典例3
(1)$150^{\circ}$.
(2)$\angle BDC + \angle BAC = 2\angle BEC$.
理由:由题意,得$\angle BDC = \angle BEC + \angle 1 + \angle 2$①,$\angle BEC = \angle BAC + \angle ABE + \angle ACE$②.$\because BE$平分$\angle ABD$,$CE$平分$\angle ACD$,$\therefore \angle ABE = \angle 1$,$\angle ACE = \angle 2$.①$ - $②,得$\angle BDC - \angle BEC = \angle BEC - \angle BAC$.$\therefore \angle BDC + \angle BAC = 2\angle BEC$.
(3)$2\angle BDC + \angle BAC = 3\angle BEC$.
理由:$\because \angle 1 = \frac{1}{3}\angle ABD$,$\angle 2 = \frac{1}{3}\angle ACD$,$\therefore \angle ABE = \frac{2}{3}\angle ABD$,$\angle ACE = \frac{2}{3}\angle ACD$.$\because$由题意知,$\angle BEC = \angle BAC + \angle ABE + \angle ACE = \angle BAC + \frac{2}{3}\angle ABD + \frac{2}{3}\angle ACD$①,$\angle BDC = \angle BAC + \angle ABD + \angle ACD$②,$\therefore$②$ + $①,得$\angle BDC + \angle BEC = 2\angle BAC + \frac{5}{3}\angle ABD + \frac{5}{3}\angle ACD$.$\therefore 3\angle BDC + 3\angle BEC = 6\angle BAC + 5\angle ABD + 5\angle ACD$.$\therefore 3\angle BDC + 3\angle BEC = \angle BAC + 5(\angle BAC + \angle ABD + \angle ACD)$.$\therefore 3\angle BDC + 3\angle BEC = \angle BAC + 5\angle BDC$.$\therefore 2\angle BDC + \angle BAC = 3\angle BEC$.
(1)$150^{\circ}$.
(2)$\angle BDC + \angle BAC = 2\angle BEC$.
理由:由题意,得$\angle BDC = \angle BEC + \angle 1 + \angle 2$①,$\angle BEC = \angle BAC + \angle ABE + \angle ACE$②.$\because BE$平分$\angle ABD$,$CE$平分$\angle ACD$,$\therefore \angle ABE = \angle 1$,$\angle ACE = \angle 2$.①$ - $②,得$\angle BDC - \angle BEC = \angle BEC - \angle BAC$.$\therefore \angle BDC + \angle BAC = 2\angle BEC$.
(3)$2\angle BDC + \angle BAC = 3\angle BEC$.
理由:$\because \angle 1 = \frac{1}{3}\angle ABD$,$\angle 2 = \frac{1}{3}\angle ACD$,$\therefore \angle ABE = \frac{2}{3}\angle ABD$,$\angle ACE = \frac{2}{3}\angle ACD$.$\because$由题意知,$\angle BEC = \angle BAC + \angle ABE + \angle ACE = \angle BAC + \frac{2}{3}\angle ABD + \frac{2}{3}\angle ACD$①,$\angle BDC = \angle BAC + \angle ABD + \angle ACD$②,$\therefore$②$ + $①,得$\angle BDC + \angle BEC = 2\angle BAC + \frac{5}{3}\angle ABD + \frac{5}{3}\angle ACD$.$\therefore 3\angle BDC + 3\angle BEC = 6\angle BAC + 5\angle ABD + 5\angle ACD$.$\therefore 3\angle BDC + 3\angle BEC = \angle BAC + 5(\angle BAC + \angle ABD + \angle ACD)$.$\therefore 3\angle BDC + 3\angle BEC = \angle BAC + 5\angle BDC$.$\therefore 2\angle BDC + \angle BAC = 3\angle BEC$.
[变式]如图①,在$\triangle ABC$中,$BD$平分$\angle ABC$,$CE$平分$\angle ACB$,$BD$与$CE$相交于点$M$。
(1)若$\angle A=50^{\circ}$,求$\angle CMD$的度数。
(2)如图②,若$MN\perp BC$于点$N$,$\angle A=60^{\circ}$,求$\angle 1-\angle 2$的度数。
(3)若$\angle BEC=x$,$\angle BDC=y$,则$\angle BMC=$______(用含$x$,$y$的式子表示)。

(1)若$\angle A=50^{\circ}$,求$\angle CMD$的度数。
(2)如图②,若$MN\perp BC$于点$N$,$\angle A=60^{\circ}$,求$\angle 1-\angle 2$的度数。
(3)若$\angle BEC=x$,$\angle BDC=y$,则$\angle BMC=$______(用含$x$,$y$的式子表示)。
答案:
[变式]
(1)$\because \angle A = 50^{\circ}$,$\therefore \angle ABC + \angle ACB = 180^{\circ} - \angle A = 130^{\circ}$.$\because BD$平分$\angle ABC$,$CE$平分$\angle ACB$,$\therefore \angle MBC = \frac{1}{2}\angle ABC$,$\angle MCB = \frac{1}{2}\angle ACB$.$\therefore \angle CMD = \angle MBC + \angle MCB = \frac{1}{2}(\angle ABC + \angle ACB) = 65^{\circ}$.
(2)$\because \angle A = 60^{\circ}$,$\therefore \angle ABC + \angle ACB = 180^{\circ} - \angle A = 120^{\circ}$.同理
(1),得$\angle MBC + \angle MCB = \frac{1}{2}(\angle ABC + \angle ACB) = 60^{\circ}$.$\therefore \angle BMC = 180^{\circ} - (\angle MBC + \angle MCB) = 120^{\circ}$.$\therefore \angle 1 + \angle BMN = 120^{\circ}$①.$\because MN \perp BC$,$\therefore \angle 2 + \angle BMN = 90^{\circ}$②.①$ - $②,得$\angle 1 - \angle 2 = 30^{\circ}$.
(3)$60^{\circ} + \frac{x + y}{3}$. 解析:如图,易得$\angle BMC = 180^{\circ} - \frac{1}{2}(\angle ABC + \angle ACB) = 180^{\circ} - \frac{1}{2}(180^{\circ} - \angle A) = 90^{\circ} + \frac{1}{2}\angle A$.$\therefore \angle A = 2\angle BMC - 180^{\circ}$.$\because$易知$\angle 4 = \angle 5$,$\angle 6 = \angle 7$,$\angle BEC = \angle A + \angle 6$,$\angle BDC = \angle A + \angle 4$,$\therefore x = \angle A + \angle 7$①,$y = \angle A + \angle 5$②.①$ + $②,得$x + y = 2\angle A + (\angle 7 + \angle 5)$.$\because \angle 7 + \angle 5 = 180^{\circ} - \angle BMC$,$\therefore x + y = 4\angle BMC - 360^{\circ} + 180^{\circ} - \angle BMC$.$\therefore \angle BMC = 60^{\circ} + \frac{x + y}{3}$.
[变式]
(1)$\because \angle A = 50^{\circ}$,$\therefore \angle ABC + \angle ACB = 180^{\circ} - \angle A = 130^{\circ}$.$\because BD$平分$\angle ABC$,$CE$平分$\angle ACB$,$\therefore \angle MBC = \frac{1}{2}\angle ABC$,$\angle MCB = \frac{1}{2}\angle ACB$.$\therefore \angle CMD = \angle MBC + \angle MCB = \frac{1}{2}(\angle ABC + \angle ACB) = 65^{\circ}$.
(2)$\because \angle A = 60^{\circ}$,$\therefore \angle ABC + \angle ACB = 180^{\circ} - \angle A = 120^{\circ}$.同理
(1),得$\angle MBC + \angle MCB = \frac{1}{2}(\angle ABC + \angle ACB) = 60^{\circ}$.$\therefore \angle BMC = 180^{\circ} - (\angle MBC + \angle MCB) = 120^{\circ}$.$\therefore \angle 1 + \angle BMN = 120^{\circ}$①.$\because MN \perp BC$,$\therefore \angle 2 + \angle BMN = 90^{\circ}$②.①$ - $②,得$\angle 1 - \angle 2 = 30^{\circ}$.
(3)$60^{\circ} + \frac{x + y}{3}$. 解析:如图,易得$\angle BMC = 180^{\circ} - \frac{1}{2}(\angle ABC + \angle ACB) = 180^{\circ} - \frac{1}{2}(180^{\circ} - \angle A) = 90^{\circ} + \frac{1}{2}\angle A$.$\therefore \angle A = 2\angle BMC - 180^{\circ}$.$\because$易知$\angle 4 = \angle 5$,$\angle 6 = \angle 7$,$\angle BEC = \angle A + \angle 6$,$\angle BDC = \angle A + \angle 4$,$\therefore x = \angle A + \angle 7$①,$y = \angle A + \angle 5$②.①$ + $②,得$x + y = 2\angle A + (\angle 7 + \angle 5)$.$\because \angle 7 + \angle 5 = 180^{\circ} - \angle BMC$,$\therefore x + y = 4\angle BMC - 360^{\circ} + 180^{\circ} - \angle BMC$.$\therefore \angle BMC = 60^{\circ} + \frac{x + y}{3}$.
查看更多完整答案,请扫码查看