2025年思维新观察八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年思维新观察八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年思维新观察八年级数学上册人教版》

【典例1】如图,把△ABC纸片沿DE折叠。
(1)当C'点落在△ABC内部时,若∠1+∠2= 62°,则∠C= ______,说明理由;
(2)当C'点落在△ABC外部时,若∠1-∠2= 72°,则∠C= ______,说明理由。
答案:

(1)$31^{\circ }$
(2)$36^{\circ }$
解:
(1)设$∠CDE=α,∠CED=β,$
$2α+2β=360^{\circ }-62^{\circ }=298^{\circ },$
$\therefore α+β=149^{\circ },$
$\therefore ∠C=31^{\circ }$(一般结论$∠1+∠2=2∠C);$
图1 C图2
(2)$\because ∠1=∠3+∠C=∠C'+∠2+∠C,$
$\therefore ∠1-∠2=2∠C,\therefore ∠C=36^{\circ }.$
变式1.如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C= 120°,则∠1+∠2的度数为(
D
)
A.90°
B.100°
C.110°
D.120°
答案: D
变式2.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E。求证:∠BAC= ∠B+2∠E。
证明:设
∠ACE=∠DCE=α
,
α=∠B+∠E
,
2α=∠B+∠BAC
,
∴∠BAC=∠B+2∠E.
答案: 证明:设$∠ACE=∠DCE=α,α=∠B+∠E,$
$2α=∠B+∠BAC,$
$\therefore ∠BAC=∠B+2∠E.$
【典例2】(1)如图1,在△ABC中,AD是高,AE为角平分线,∠B-∠C= 20°,则∠DAE的大小为______
10°

(2)如图2,△ABC中,∠BAC外角平分线交直线BC于D点,∠2-∠1= 52°,求∠ADB的大小。
26°

答案: 解:
(1)设$∠B=α,∠C=α-20^{\circ },$
则$∠BAC=200-2α,$
$\therefore ∠BAE=100^{\circ }-α,$
$\therefore ∠DAE=100^{\circ }-α-(90^{\circ }-α)=10^{\circ };$
(2)$∠EAD=∠1+∠ADB,$
$∠CAD=∠2-∠ADB,$
$\therefore ∠1+∠ADB=∠2-∠ADB,$
$∠ADB=\frac{1}{2}(∠2-∠1)=26^{\circ }.$

查看更多完整答案,请扫码查看

关闭