2025年53精准练八年级数学下册北师大版山西专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年53精准练八年级数学下册北师大版山西专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第10页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
1. 如图,在△ABC中,AB = BC,DE⊥BC于点D,交AC于点E.若E是AC的中点,求证:∠CED = $\frac{1}{2}$∠B.

答案:
证明:如图,连接BE.
∵AB = BC,E是AC的中点,
∴BE⊥AC,∠ABE = ∠CBE = $\frac{1}{2}$∠ABC,
∴∠BEC = 90°,
∴∠CED + ∠BED = 90°.
∵ED⊥BC,
∴∠BDE = 90°,
∴∠CBE + ∠BED = 90°,
∴∠CED = ∠CBE,
∴∠CED = $\frac{1}{2}$∠ABC.
证明:如图,连接BE.
∵AB = BC,E是AC的中点,
∴BE⊥AC,∠ABE = ∠CBE = $\frac{1}{2}$∠ABC,
∴∠BEC = 90°,
∴∠CED + ∠BED = 90°.
∵ED⊥BC,
∴∠BDE = 90°,
∴∠CBE + ∠BED = 90°,
∴∠CED = ∠CBE,
∴∠CED = $\frac{1}{2}$∠ABC.
2. 如图,在Rt△ABC中,AC = BC,∠C = 90°,O为AB的中点,OE⊥OF,且OE,OF分别交AC,BC于点E,F.求证:OE = OF.

答案:
证明:如图,连接OC.
∵AC = BC,∠ACB = 90°,O为AB的中点,
∴∠B = ∠ACO = ∠BCO = 45°,CO⊥AB,
∴OC = OB,∠COB = 90°,
∴∠COF + ∠FOB = 90°.
∵∠EOF = 90°,
∴∠EOC + ∠COF = 90°,
∴∠FOB = ∠EOC.在△EOC和△FOB中,$\begin{cases} \angle EOC = \angle FOB, \\ OC = OB, \\ \angle OCE = \angle B, \end{cases}$
∴△EOC≌△FOB(ASA),
∴OE = OF.
证明:如图,连接OC.
∵AC = BC,∠ACB = 90°,O为AB的中点,
∴∠B = ∠ACO = ∠BCO = 45°,CO⊥AB,
∴OC = OB,∠COB = 90°,
∴∠COF + ∠FOB = 90°.
∵∠EOF = 90°,
∴∠EOC + ∠COF = 90°,
∴∠FOB = ∠EOC.在△EOC和△FOB中,$\begin{cases} \angle EOC = \angle FOB, \\ OC = OB, \\ \angle OCE = \angle B, \end{cases}$
∴△EOC≌△FOB(ASA),
∴OE = OF.
3. 如图,已知∠AOB = 60°,点P在边OA上,OP = 12,点M、N在边OB上,PM = PN,若OM = 5,求MN的长.

答案:
解:如图,作PC⊥OB于C.
∵PM = PN,PC⊥OB,
∴CM = CN在△OPC中,∠PCO = 90°,∠POC = 60°,OP = 12,
∴∠OPC = 30°,
∴OC = $\frac{1}{2}$OP = 6,
∵OM = 5,
∴CM = OC - OM = 6 - 5 = 1,
∴CN = CM = 1,
∴MN = CM + CN = 1 + 1 = 2.
解:如图,作PC⊥OB于C.
∵PM = PN,PC⊥OB,
∴CM = CN在△OPC中,∠PCO = 90°,∠POC = 60°,OP = 12,
∴∠OPC = 30°,
∴OC = $\frac{1}{2}$OP = 6,
∵OM = 5,
∴CM = OC - OM = 6 - 5 = 1,
∴CN = CM = 1,
∴MN = CM + CN = 1 + 1 = 2.
4. [2024运城期中]如图,$△ABC$中,$AD$为$∠BAC$的平分线,作$BD$垂直$AD$于$D$,$△ACD$的面积为8,则$△ABC$的面积为________.

答案:
16 详解:如图所示,延长BD交AC于E,
∵AD为∠BAC的平分线,AD⊥BD,
∴∠BAD = ∠EAD,∠ADB = ∠ADE = 90°,又
∵AD = AD,
∴△ADB≌△ADE(ASA),
∴BD = DE,
∴$S_{\triangle ADB}=S_{\triangle ADE}$,$S_{\triangle EDC}=S_{\triangle BDC}$,
∵$S_{\triangle ABC}=S_{\triangle ADB}+S_{\triangle ADE}+S_{\triangle EDC}+S_{\triangle BDC}$,
∴$S_{\triangle ADE}+S_{\triangle EDC}=\frac{1}{2}S_{\triangle ABC}$,即$S_{\triangle ABC}=2S_{\triangle ACD}=16$.
16 详解:如图所示,延长BD交AC于E,
∵AD为∠BAC的平分线,AD⊥BD,
∴∠BAD = ∠EAD,∠ADB = ∠ADE = 90°,又
∵AD = AD,
∴△ADB≌△ADE(ASA),
∴BD = DE,
∴$S_{\triangle ADB}=S_{\triangle ADE}$,$S_{\triangle EDC}=S_{\triangle BDC}$,
∵$S_{\triangle ABC}=S_{\triangle ADB}+S_{\triangle ADE}+S_{\triangle EDC}+S_{\triangle BDC}$,
∴$S_{\triangle ADE}+S_{\triangle EDC}=\frac{1}{2}S_{\triangle ABC}$,即$S_{\triangle ABC}=2S_{\triangle ACD}=16$.
5. 如图,在△ABC中,∠BAC = 120°,AD⊥BC于D,且AB + BD = DC,求∠C的度数.

答案:
解: 如图, 在DC上截取DH, 使得DH = DB,连接AH.
∵BD = DH,AD⊥BH,
∴AB = AH.
∵AB + BD = DC,DC = DH + HC,
∴AB = CH = AH,
∴∠B = ∠AHD,∠C = ∠HAC,设∠C = x,则∠AHD = ∠B = 2x,
∵∠B + ∠C + ∠BAC = 180°,
∴3x + 120° = 180°,
∴x = 20°,
∴∠C = 20°.
解: 如图, 在DC上截取DH, 使得DH = DB,连接AH.
∵BD = DH,AD⊥BH,
∴AB = AH.
∵AB + BD = DC,DC = DH + HC,
∴AB = CH = AH,
∴∠B = ∠AHD,∠C = ∠HAC,设∠C = x,则∠AHD = ∠B = 2x,
∵∠B + ∠C + ∠BAC = 180°,
∴3x + 120° = 180°,
∴x = 20°,
∴∠C = 20°.
查看更多完整答案,请扫码查看