2025年经纶学典学霸黑白题高中数学必修第一册苏教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年经纶学典学霸黑白题高中数学必修第一册苏教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年经纶学典学霸黑白题高中数学必修第一册苏教版》

1. (四川高考)若$a>b>0,c<d<0$则一定有 (
D
)

A.$\frac{a}{c}>\frac{b}{d}$
B.$\frac{a}{c}<\frac{b}{d}$
C.$\frac{a}{d}>\frac{b}{c}$
D.$\frac{a}{d}<\frac{b}{c}$
答案: 1.D 解析:已知$a>b>0$,$c<d<0$,所以$-\frac{1}{d}>-\frac{1}{c}>0$,所以$-\frac{a}{d}>-\frac{b}{c}$,故$\frac{a}{d}<\frac{b}{c}$,故选$D$.
2. (辽宁高考)已知$-1<x + y<4$且$2<x - y<3$,则$z = 2x - 3y$的取值范围是
(3,8)
. (答案用区间表示)
答案: 2.$(3,8)$ 解析:设$z = 2x - 3y = a(x + y) + b(x - y)$,则$\begin{cases}a = -\frac{1}{2}\\a - b = 2\\a + b = -3\end{cases}$(此处原解析存在表述问题,正确为$\begin{cases}a + b = 2\\a - b = -3\end{cases}$),解得$\begin{cases}a = -\frac{1}{2}\\b = \frac{5}{2}\end{cases}$,即$z = -\frac{1}{2}(x + y) + \frac{5}{2}(x - y)$.
$\because -1 < x + y < 4$且$2 < x - y < 3$,$\therefore -2 < -\frac{1}{2}(x + y) < \frac{1}{2}$且$5 < \frac{5}{2}(x - y) < \frac{15}{2}$,$3 < -\frac{1}{2}(x + y) + \frac{5}{2}(x - y) < 8$.故答案为$(3,8)$.
3. (江苏高考)设实数$x,y$满足$3\leqslant xy^{2}\leqslant8,4\leqslant\frac{x^{2}}{y}\leqslant9$,则$\frac{x^{3}}{y^{4}}$的最大值是
27
.
答案: 3.27 解析:$\frac{x^{3}}{y^{4}} · \frac{x^{4}}{y^{2}} = \frac{x^{2}}{xy^{2}} = (\frac{x^{2}}{y})^{2} · \frac{1}{xy^{2}} \leq 81 × \frac{1}{3} = 27$,当且仅当$\frac{x^{2}}{y} = 9$,$xy^{2} = 3$,即$x = 3$,$y = 1$时等号成立.故答案为27.
4. (浙江高考)若$a>0,b>0$,则“$a + b\leqslant4$”是“$ab\leqslant4$”的 (
A
)

A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案: 4.A 解析:当$a > 0$,$b > 0$时,$a + b \geq 2\sqrt{ab}$,则当$a + b \leq 4$时,有$2\sqrt{ab} \leq a + b \leq 4$,解得$ab \leq 4$,充分性成立;当$a = 1$,$b = 4$时,满足$ab \leq 4$,但此时$a + b = 5 > 4$,必要性不成立.综上所述,“$a + b \leq 4$”是“$ab \leq 4$”的充分不必要条件.故选A.
5. (多选)(2022·新高考全国Ⅱ)若$x,y$满足$x^{2}+y^{2}-xy = 1$,则 (
BC
)

A.$x + y\leqslant1$
B.$x + y\geqslant - 2$
C.$x^{2}+y^{2}\leqslant2$
D.$x^{2}+y^{2}\geqslant1$
答案: 5.BC 解析:$x^{2} + y^{2} - xy = 1$可变形为$(x + y)^{2} - 1 = 3xy \leq 3(\frac{x + y}{2})^{2}$,解得$-2 \leq x + y \leq 2$,且当仅当$x = y = -1$时,$x + y = -2$,当且仅当$x = y = 1$时,$x + y = 2$,所以A错误,B正确;由$x^{2} + y^{2} - xy = 1$可变形为$(x^{2} + y^{2}) - 1 = xy \leq \frac{x^{2} + y^{2}}{2}$,解得$x^{2} + y^{2} \leq 2$,且仅当$x = y = \pm 1$时取等号,所以C正确;因为$x^{2} + y^{2} \geq 2\sqrt{x^{2}y^{2}} = 2|xy|$,当$xy < 0$,即$x$,$y$异号时,$x^{2} + y^{2} \geq -2xy$,由$x^{2} + y^{2} - xy = 1$可变形为$1 - (x^{2} + y^{2}) = -xy \leq \frac{x^{2} + y^{2}}{2}$,解得$x^{2} + y^{2} \geq \frac{2}{3}$,当且仅当$x = -y$,即$x = \frac{\sqrt{3}}{3}$,$y = -\frac{\sqrt{3}}{3}$或$x = -\frac{\sqrt{3}}{3}$,$y = \frac{\sqrt{3}}{3}$时取等号,所以D错误.故选BC.
6. (浙江高考)若正数$x,y$满足$x + 3y = 5xy$,则$3x + 4y$的最小值是 (
C
)

A.$\frac{24}{5}$
B.$\frac{28}{5}$
C.5
D.6
答案: 6.C 解析:由已知可得$\frac{3}{5x} + \frac{1}{5y} = 1$,则$3x + 4y = (\frac{3}{5x} + \frac{1}{5y})(3x + 4y) = \frac{9}{5} + \frac{4}{5} + \frac{12y}{5x} + \frac{3x}{5y} \geq \frac{13}{5} + 2\sqrt{\frac{12y}{5x} · \frac{3x}{5y}} = 5$,所以$3x + 4y$的最小值是5.故选C.
7. (天津高考)已知$a>0,b>0$,且$ab = 1$,则$\frac{1}{2a}+\frac{1}{2b}+\frac{8}{a + b}$的最小值为
4
.
答案: 7.4 解析:$\because a > 0$,$b > 0$,$ab = 1$,$\therefore a + b > 0$,$\therefore \frac{1}{2a} + \frac{1}{2b} + \frac{8}{a + b} = \frac{ab}{2a} + \frac{ab}{2b} + \frac{8}{a + b} = \frac{b}{2} + \frac{a}{2} + \frac{8}{a + b} \geq 2\sqrt{\frac{a + b}{2} · \frac{8}{a + b}} = 4$,当且仅当$\frac{a + b}{2} = \frac{8}{a + b}$时取等号,结合$ab = 1$,解得$a = 2 - \sqrt{3}$,$b = 2 + \sqrt{3}$或$a = 2 + \sqrt{3}$,$b = 2 - \sqrt{3}$时,等号成立.故答案为4.
8. (江苏高考)已知$5x^{2}y^{2}+y^{4}=1(x,y\in\mathbf{R})$,则$x^{2}+y^{2}$的最小值是
$\frac{4}{5}$
.
答案: 8.$\frac{4}{5}$ 解析:$\because 5x^{2}y^{2} + y^{4} = 1$,$\therefore y \neq 0$且$x^{2} = \frac{1 - y^{4}}{5y^{2}}$,$\therefore x^{2} + y^{2} = \frac{1 - y^{4}}{5y^{2}} + y^{2} = \frac{1}{5y^{2}} + \frac{4y^{2}}{5} \geq 2\sqrt{\frac{1}{5y^{2}} · \frac{4y^{2}}{5}} = \frac{4}{5}$,当且仅当$\frac{1}{5y^{2}} = \frac{4y^{2}}{5}$,即$x^{2} = \frac{3}{10}$,$y^{2} = \frac{1}{2}$时取等号.$\therefore x^{2} + y^{2}$的最小值为$\frac{4}{5}$.故答案为$\frac{4}{5}$.
9. (天津高考)若$a>0,b>0$,则$\frac{1}{a}+\frac{a}{b^{2}}+b$的最小值为
$2\sqrt{2}$
.
答案: 9.$2\sqrt{2}$ 解析:$\because a > 0$,$b > 0$,$\therefore \frac{1}{a} + \frac{a}{b^{2}} + b \geq 2\sqrt{\frac{a}{b^{2}} · \frac{1}{a}} + b = \frac{2}{b} + b \geq 2\sqrt{\frac{2}{b} · b} = 2\sqrt{2}$,当且仅当$\frac{1}{a} = \frac{a}{b^{2}}$且$\frac{2}{b} = b$,即$a = b = \sqrt{2}$时等号成立,所以$\frac{1}{a} + \frac{a}{b^{2}} + b$的最小值为$2\sqrt{2}$.故答案为$2\sqrt{2}$.
10. (天津高考)设$x>0,y>0,x + 2y = 4$,则$\frac{(x + 1)(2y + 1)}{xy}$的最小值为
$\frac{9}{2}$
.
答案: 10.$\frac{9}{2}$ 解析:由$x + 2y = 4$,得$x + 2y = 4 \geq 2\sqrt{2xy}$,得$xy \leq 2$,$\frac{(x + 1)(2y + 1)}{xy} = \frac{2xy + x + 2y + 1}{xy} = \frac{2xy + 5}{xy} = 2 + \frac{5}{xy} \geq 2 + \frac{5}{2} = \frac{9}{2}$,当且仅当$x = 2y$,即$x = 2$,$y = 1$时等号成立.答案为$\frac{9}{2}$.
11. (2023·新课标全国Ⅰ)已知集合$M=\{-2,-1,0,1,2\},N = \{x|x^{2}-x - 6\geqslant0\}$,则$M\cap N=$ (
C
)

A.$\{-2,-1,0,1\}$
B.$\{0,1,2\}$
C.$\{-2\}$
D.$\{2\}$
答案: 11.C 解析:因为$N = \{x|x^{2} - x - 6 \geq 0\} = (-\infty, -2] \cup [3, +\infty)$,而$M = \{-2, -1, 0, 1, 2\}$,所以$M \cap N = \{-2\}$.故选C.
12. (全国高考)不等式$\frac{x - 2}{x + 3}>0$的解集是 (
C
)

A.$(-3,2)$
B.$(2,+\infty)$
C.$(-\infty,-3)\cup(2,+\infty)$
D.$(-\infty,-2)\cup(3,+\infty)$
答案: 12.C 解析:由$\frac{x - 2}{x + 3} > 0 \Leftrightarrow (x - 2)(x + 3) > 0$,解得$x > 2$或$x < -3$.故选C.
13. (天津高考)设$x\in\mathbf{R}$,则“$\vert x - 2\vert<1$”是“$x^{2}+x - 2>0$”的 (
A
)

A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
答案: 13.A 解析:由$|x - 2| < 1$,可得$1 < x < 3$,即$x \in (1, 3)$;由$x^{2} + x - 2 = (x - 1)(x + 2) > 0$,可得$x < -2$或$x > 1$,即$x \in (-\infty, -2) \cup (1, +\infty)$.$\therefore (1, 3)$是$(-\infty, -2) \cup (1, +\infty)$的真子集,故“$|x - 2| < 1$”是“$x^{2} + x - 2 > 0$”的充分不必要条件.故选A.
14. (重庆高考)关于$x$的不等式$x^{2}-2ax - 8a^{2}<0(a>0)$的解集为$(x_{1},x_{2})$,且$x_{2}-x_{1}=15$,则$a =$ (
A
)

A.$\frac{5}{2}$
B.$\frac{7}{2}$
C.$\frac{15}{4}$
D.$\frac{15}{2}$
答案: 14.A 解析:因为关于$x$的不等式$x^{2} - 2ax - 8a^{2} < 0(a > 0)$的解集为$(x_1, x_2)$,所以$x_1 + x_2 = 2a$,$x_1x_2 = -8a^{2}$,又$x_2 - x_1 = 15$,所以$(x_2 - x_1)^{2} = (x_2 + x_1)^{2} - 4x_1x_2 = 36a^{2} = 15^{2}$,解得$a = \pm \frac{5}{2}$.因为$a > 0$,所以$a = \frac{5}{2}$.故选A.
15. (山东高考)当$x\in(1,2)$时,不等式$x^{2}+mx + 4<0$恒成立,则$m$的取值范围是
$(-\infty, -5]$
.
答案: 15.$(-\infty, -5]$ 解析:令$y = x^{2} + mx + 4$,则$y = x^{2} + mx + 4$的图象是开口向上的抛物线,要使当$x \in (1, 2)$时,$y < 0$恒成立,只需$\begin{cases}1^{2} + m · 1 + 4 \leq 0\\2^{2} + m · 2 + 4 \leq 0\end{cases}$,解得$m \leq -5$.

查看更多完整答案,请扫码查看

关闭