2025年经纶学典学霸黑白题高中数学必修第一册苏教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年经纶学典学霸黑白题高中数学必修第一册苏教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年经纶学典学霸黑白题高中数学必修第一册苏教版》

8. * 我们平时听到的乐音不只是一个音在响,而是许多个音的结合,称为复合音.复合音的产生是因为发声体在全段振动,产生频率为$ f $的基音的同时,其各部分如二分之一、三分之一、四分之一部分也在振动,产生的频率恰好是全段振动频率的倍数,如$ 2f $,$ 3f $,$ 4f $等.这些音叫谐音,因为其振幅较小,一般不易单独听出来,所以我们听到的声音的函数为$ y = \sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + \frac{1}{4}\sin 4x + ·s $.则函数$ y = \sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x $的周期为 (
C
)

A.$\frac{\pi}{2}$
B.$\pi$
C.$2\pi$
D.$\frac{2}{3}\pi$
答案: 8.C解析:因为$y = f(x) = \sin x + \frac {1}{2} \sin 2x + \frac {1}{3} \sin 3x$,所以$f(x + 2\pi) = \sin (x + 2\pi) + \frac {1}{2} \sin 2(x + 2\pi) + \frac {1}{3} \sin 3(x + 2\pi) = \sin x + \frac {1}{2} \sin (2x + 4\pi) + \frac {1}{3} \sin (3x + 6\pi) = \sin x + \frac {1}{2} \sin 2x + \frac {1}{3} \sin 3x = f(x)$,故$2\pi$是$y = f(x)$的一个周期。又$y = \sin x$的最小正周期为$2\pi$,所以函数$y = \sin x + \frac {1}{2} \sin 2x + \frac {1}{3} \sin 3x$的最小正周期为$2\pi$。故选C。
9. * (多选)(2025·河北保定高一期末)函数$ f(x) = \sin(\omega x + \varphi) $ ($\omega > 0, 0 < \varphi < \frac{\pi}{2}$),已知$\left(-\frac{\pi}{6}, 0\right)$为函数$ f(x) $的一个对称中心,直线$ x = \frac{7\pi}{12} $为$ f(x) $的一条对称轴,且函数在$\left[\frac{7\pi}{12}, \frac{13\pi}{12}\right]$上单调递减,则下列说法正确的是 (
BCD
)

A.$\omega = 2$
B.直线$ x = \frac{25}{12}\pi $为函数$ f(x) $图象的一条对称轴
C.函数$ f(x) = 0 $在区间$[0, 2\pi]$上有1个解
D.对于任意的$ k > 0 $,关于$ y = f(x) $的图象与直线$ y = k\left(x - \frac{4}{3}\pi\right) $总有奇数个交点
答案: 9.BCD解析:由$\left( - \frac {\pi}{6},0 \right)$为函数$f(x)$的一个对称中心,所以有$\omega \left( - \frac {\pi}{6} \right) + \varphi = k_1\pi$,$k_1 \in \mathbf {Z}$,由直线$x = \frac {7\pi}{12}$为$f(x)$的一条对称轴,所以有$\frac {7\pi}{12}\omega + \varphi = \frac {\pi}{2} + k_2\pi$,$k_2 \in \mathbf {Z}$,上面两式相减得$\frac {3\pi\omega}{4} = \frac {\pi}{2} + (k_2 - k_1)\pi \Rightarrow \omega = \frac {2}{3} + \frac {4}{3}(k_2 - k_1)$,设函数$f(x)$的周期为$T$,因为函数$f(x)$在$\left[ \frac {7\pi}{12},\frac {13\pi}{12} \right]$上单调递减,$\frac {13\pi}{12} - \frac {7\pi}{12} = \frac {\pi}{2} \leqslant \frac {T}{2}$,所以$T \geqslant \pi$。又因为$\omega > 0$,所以有$0 < \omega \leqslant 2$,则有$0 < \frac {2}{3} + \frac {4}{3}(k_2 - k_1) \leqslant 2$,即$k_2 - k_1 = 0$或$k_2 - k_1 = 1$,此时$\omega = \frac {2}{3}$或$\omega = 2$,当$\omega = 2$时,由直线$x = \frac {7\pi}{12}$为$f(x)$的一条对称轴,且函数$f(x)$在$\left[ \frac {7\pi}{12},\frac {13\pi}{12} \right]$上单调递减,得$f \left( \frac {7\pi}{12} \right) = 1$,则$f \left( \frac {7\pi}{12} \right) = \sin \left( \frac {7\pi}{6} + \varphi \right) = 1$,所以有$\frac {7\pi}{6} + \varphi = \frac {\pi}{2} + 2k\pi \Rightarrow \varphi = \frac {2\pi}{3} + 2k\pi$,$k \in \mathbf {Z}$,由于$0 < \varphi < \frac {\pi}{2}$,此时无解;当$\omega = \frac {2}{3}$时,由$f \left( \frac {7\pi}{12} \right) = 1$,则$f \left( \frac {7\pi}{12} \right) = \sin \left( \frac {7\pi}{18} + \varphi \right) = 1$,所以有$\frac {7\pi}{18} + \varphi = \frac {\pi}{2} + 2k\pi \Rightarrow \varphi = \frac {\pi}{9} + 2k\pi$,$k \in \mathbf {Z}$,由于$0 < \varphi < \frac {\pi}{2}$,此时$\varphi = \frac {\pi}{9}$,所以$\omega = \frac {2}{3}$满足题意,故A错误;此时有$f(x) = \sin \left( \frac {2}{3}x + \frac {\pi}{9} \right)$,由$f \left( \frac {25\pi}{12} \right) = \sin \left( \frac {2}{3} × \frac {25\pi}{12} + \frac {\pi}{9} \right) = \sin \frac {3\pi}{2} = -1$,故B正确;当$x \in [0,2\pi]$时,$\frac {2}{3}x + \frac {\pi}{9} \in \left[ \frac {\pi}{9},\frac {13\pi}{9} \right]$,此时由$f(x) = \sin \left( \frac {2}{3}x + \frac {\pi}{9} \right) = 0$,得$\frac {2}{3}x + \frac {\pi}{9} = \pi \Rightarrow x = \frac {4\pi}{3}$,故C正确;由$f \left( \frac {4\pi}{3} \right) = \sin \left( \frac {2}{3} × \frac {4\pi}{3} + \frac {\pi}{9} \right) = \sin \pi = 0$,可知函数$f(x)$关于点$\left( \frac {4\pi}{3},0 \right)$对称,所以过这个对称中心的直线$y = k \left( x - \frac {4\pi}{3} \right)$与函数$f(x)$的图象至少有一个交点$\left( \frac {4\pi}{3},0 \right)$,再根据函数$f(x)$是关于这个点的中心对称图象,所以除这个对称中心之外的交点是成对出现的,即肯定有奇数个交点,故D正确。故选BCD。
10. * 已知$\left(-\frac{1}{4}, m\right)$,$\left(\frac{1}{4}, m\right)$,$\left(\frac{3}{4}, m\right)$是曲线$ y = |\tan \omega x| $ ($\omega > 0$)与直线$ y = m $相邻的三个交点,则$\omega = $
$\pi$
.
答案:
10.$\pi$解析:作出函数$y = |\tan \omega x| (\omega > 0)$的图象如图所示,不妨设$A \left( - \frac {1}{4},m \right)$,
B$\left( \frac {1}{4},m \right)$,C$\left( \frac {3}{4},m \right)$,可知$y = |\tan \omega x| (\omega > 0)$的最小正周期$T = \frac {3}{4} - \left( - \frac {1}{4} \right) = 1$,$y = |\tan \omega x| (\omega > 0)$的周期与$y = \tan \omega x (\omega > 0)$的周期相等,所以$\frac {\pi}{\omega} = 1$,解得$\omega = \pi$。
a2xfrac12
11. * (2025·浙江宁波高一期末)函数$ f(x) = \sin\left(2x - \frac{\pi}{6}\right) $在区间$[0, m]$上不单调,则实数$ m $的取值范围为
$\left( \frac {\pi}{3}, + \infty \right)$
.
答案: 11.$\left( \frac {\pi}{3}, + \infty \right)$解析:$x \in [0,m]$时,$2x - \frac {\pi}{6} \in \left[ - \frac {\pi}{6},2m - \frac {\pi}{6} \right]$,由于$f(x) = \sin \left( 2x - \frac {\pi}{6} \right)$在区间$[0,m]$上不单调,则$2m - \frac {\pi}{6} > \frac {\pi}{2}$,故$m > \frac {\pi}{3}$。故答案为$\left( \frac {\pi}{3}, + \infty \right)$。
12. (2025·安徽六安高一期末)已知函数$ f(x) = 2\sin(\omega x + \varphi) $,其中$\omega > 0$,$ 0 < \varphi < \pi $,且$ f(x) \leq f\left(\frac{\pi}{3}\right) $恒成立,若$ f(x) $在区间$\left(0, \frac{\pi}{2}\right)$上恰有3个对称中心,则$\omega$的取值范围是
$\frac {9}{2} < \omega < \frac {15}{2}$
.
答案: 12.$\frac {9}{2} < \omega < \frac {15}{2}$解析:因为$f(x) \leqslant f \left( \frac {\pi}{3} \right)$恒成立,则$f \left( \frac {\pi}{3} \right) = 2\sin \left( \frac {\pi\omega}{3} + \varphi \right) = 2$,所以$\frac {\pi\omega}{3} + \varphi = 2k\pi + \frac {\pi}{2} (k \in \mathbf {Z})$,则$\varphi = 2k\pi + \frac {\pi}{2} - \frac {\pi\omega}{3} (k \in \mathbf {Z})$,由$0 < \varphi < \pi$,得$0 < 2k\pi + \frac {\pi}{2} - \frac {\pi\omega}{3} < \pi$,解得$6k - \frac {3}{2} < \omega < 6k + \frac {3}{2} (k \in \mathbf {Z})$,当$x \in \left( 0,\frac {\pi}{2} \right)$时,$\omega x + \varphi \in \left( \varphi,\frac {\pi\omega}{2} + \varphi \right)$。又$0 < \varphi < \pi$,且$f(x)$在区间$\left( 0,\frac {\pi}{2} \right)$上恰有3个对称中心,所以这3个对称中心的横坐标为$\omega x + \varphi = \pi$或$2\pi$或$3\pi$,即$3\pi < \frac {\pi\omega}{2} + \varphi \leqslant 4\pi$,将$\varphi = 2k\pi + \frac {\pi}{2} - \frac {\pi\omega}{3} (k \in \mathbf {Z})$代入得$3\pi < \frac {\pi\omega}{2} + 2k\pi + \frac {\pi}{2} - \frac {\pi\omega}{3} \leqslant 4\pi$,即$3\pi < \frac {\pi\omega}{6} + 2k\pi + \frac {\pi}{2} \leqslant 4\pi$,解得$15 - 12k < \omega \leqslant 21 - 12k$,要使得$\omega$有解,则$\begin{cases}6k - \frac {3}{2} < 21 - 12k \\15 - 12k < 6k + \frac {3}{2}\end{cases}$,解得$\frac {3}{4} < k < \frac {5}{4}$。又$k \in \mathbf {Z}$,由题意可知$k = 1$。所以$\frac {9}{2} < \omega < \frac {15}{2}$且$3 \leqslant \omega \leqslant 9$,可得$\frac {9}{2} < \omega < \frac {15}{2}$,即$\omega$的取值范围是$\frac {9}{2} < \omega < \frac {15}{2}$。故答案为$\frac {9}{2} < \omega < \frac {15}{2}$。
13. (2025·江苏泰州高一月考)已知函数$ f(x) = 2\sin\left(x + \frac{\pi}{3}\right) $,且函数$ g(x) = f\left(\frac{\pi}{2} - x\right) $.
(1)求函数$ g(x) $的解析式;
(2)若存在$ x \in \left[0, \frac{\pi}{2}\right) $,使等式$[g(x)]^2 - mg(x) + 2 = 0$成立,求实数$ m $的取值范围;
(3)若当$ x \in \left[-\frac{\pi}{3}, \frac{2\pi}{3}\right] $时,不等式$\frac{1}{2}f(x) - ag(-x) > a - 2$恒成立,求实数$ a $的取值范围.
答案: 13.解:
(1)因为函数$f(x) = 2\sin \left( x + \frac {\pi}{3} \right)$,所以$g(x) = f \left( \frac {\pi}{2} - x \right) = 2\sin \left( \frac {\pi}{2} - x + \frac {\pi}{3} \right) = 2\sin \left( -x + \frac {5\pi}{6} \right) = 2\sin \left[ \pi - \left( -x + \frac {5\pi}{6} \right) \right] = 2\sin \left( x + \frac {\pi}{6} \right)$。
(2)由
(1)知,$g(x) = 2\sin \left( x + \frac {\pi}{6} \right)$,若$x \in \left[ 0,\frac {\pi}{2} \right)$,则$x + \frac {\pi}{6} \in \left[ \frac {\pi}{6},\frac {2\pi}{3} \right)$,所以$1 \leqslant g(x) \leqslant 2$,令$g(x) = t$,则$1 \leqslant t \leqslant 2$,那么若存在$x \in \left[ 0,\frac {\pi}{2} \right)$,使等式$[g(x)]^2 - mg(x) + 2 = 0$成立,即为存在$t \in [1,2]$,使得$t^2 - mt + 2 = 0$即$m = t + \frac {2}{t}$成立,当$t = 1$时,$m = 3$,当$t = 2$时,可得$m = 3$,当$t = \sqrt {2}$时,$m = 2\sqrt {2}$。因为函数$y = x + \frac {2}{x}$在$x \in [1,\sqrt {2}]$上单调递减,在$x \in (\sqrt {2},2]$上单调递增,所以$m$的最小值为$2\sqrt {2}$,$m$的最大值为$3$,所以实数$m$的取值范围为$[2\sqrt {2},3]$。
(3)当$x \in \left[ - \frac {\pi}{3},\frac {2\pi}{3} \right]$时,不等式$\frac {1}{2}f(x) - a\sin \left( -x + \frac {\pi}{6} \right) > a - 2$恒成立,即$\sin \left( x + \frac {\pi}{3} \right) + 2a\sin \left( x - \frac {\pi}{6} \right) > a - 2$恒成立,所以当$x \in \left[ - \frac {\pi}{3},\frac {2\pi}{3} \right]$时,$\left[ \sin \left( x + \frac {\pi}{3} \right) + 2a\sin \left( x - \frac {\pi}{6} \right) \right] > a - 2$,当$x \in \left[ - \frac {\pi}{3},\frac {2\pi}{3} \right]$时,$0 \leqslant x + \frac {\pi}{3} \leqslant \pi$,$-\frac {\pi}{2} \leqslant x - \frac {\pi}{6} \leqslant \frac {\pi}{2}$,$y = \sin \left( x + \frac {\pi}{3} \right)$在$\left[ - \frac {\pi}{3},\frac {\pi}{6} \right]$上单调递增,在$\left[ \frac {\pi}{6},\frac {2\pi}{3} \right]$上单调递减,当$x = - \frac {\pi}{3}$或$x = \frac {2\pi}{3}$时取得最小值$y_{\min} = 0$,$y = \sin \left( x - \frac {\pi}{6} \right)$在$\left[ - \frac {\pi}{3},\frac {2\pi}{3} \right]$上单调递增,当$x = - \frac {\pi}{3}$时取得最小值$y_{\min} = -1$,当$x = \frac {2\pi}{3}$时取得最大值$y_{\max} = 0$,即$\sin \left( x + \frac {\pi}{3} \right) \in [0,1]$,$\sin \left( x - \frac {\pi}{6} \right) \in [-1,1]$,若$a = 0$,显然$\sin \left( x + \frac {\pi}{3} \right) > -2$恒成立;若$a > 0$,当$x = - \frac {\pi}{3}$时,$\sin \left( x + \frac {\pi}{3} \right)$,$\sin \left( x - \frac {\pi}{6} \right)$分别取得最小值,所以当$x = - \frac {\pi}{3}$时,$\sin \left( x + \frac {\pi}{3} \right) + 2a\sin \left( x - \frac {\pi}{6} \right)$也取得最小值,即$\sin \left( - \frac {\pi}{3} + \frac {\pi}{3} \right) + 2a\sin \left( - \frac {\pi}{3} - \frac {\pi}{6} \right) > a - 2$成立,故可得$-2a > a - 2$,解得$0 < a < \frac {2}{3}$;若$a < 0$,当$x = \frac {2\pi}{3}$时,$\sin \left( x + \frac {\pi}{3} \right)$取得最小值,$\sin \left( x - \frac {\pi}{6} \right)$取得最大值,则$\sin \left( x + \frac {\pi}{3} \right) + 2a\sin \left( x - \frac {\pi}{6} \right)$取得最小值,即$\sin \left( \frac {2\pi}{3} + \frac {\pi}{3} \right) + 2a\sin \left( \frac {2\pi}{3} - \frac {\pi}{6} \right) > a - 2$成立,得$a > -2$,所以$-2 < a < 0$。综上可得,$a$的范围是$\left( -2,\frac {2}{3} \right)$。
* (2025·湖南师大附中高一期末)如图,函数$ y = \sqrt{2}\sin \omega x $ ($\omega > 0$)的图象和函数$ y = \sqrt{2}\cos \omega x $ ($\omega > 0$)的图象的连续两个交点为$ A $,$ B $,若$\sqrt{5} < |AB| \leq 2\sqrt{2}$,则$\omega$的取值范围为
$\left[ \frac {\pi}{2},\pi \right)$
.
答案:
$\left[ \frac {\pi}{2},\pi \right)$解析:如图,

根据对称性知$|AB| = |BC|$,即$\triangle ABC$为等腰三角形,三角函数的周期$T = \frac {2\pi}{\omega}$,且$|AC| = T$,取$AC$的中点$D$,连接$BD$,则$BD \bot AC$,$|AB| = \sqrt {|AD|^2 + |BD|^2}$,由$\sqrt {2}\sin \omega x = \sqrt {2}\cos \omega x$,得$\omega x = \frac {\pi}{4}$或$\omega x = \frac {5\pi}{4}$,则$y_A = \sqrt {2}\sin \frac {\pi}{4} = \sqrt {2} × \frac {\sqrt {2}}{2} = 1$,$y_B = \sqrt {2}\sin \frac {5\pi}{4} = \sqrt {2} × \left( - \frac {\sqrt {2}}{2} \right) = -1$,则$|BD| = 2$,$|AB| = \sqrt {|AD|^2 + |BD|^2} = \sqrt {\frac {T^2}{4} + 4}$。因为$\sqrt {5} < |AB| \leqslant 2\sqrt {2}$,所以$\sqrt {5} < \sqrt {\frac {T^2}{4} + 4} \leqslant 2\sqrt {2}$,解得$2 < T \leqslant 4$,即$2 < \frac {2\pi}{\omega} \leqslant 4$,解得$\frac {\pi}{2} \leqslant \omega < \pi$,所以$\omega$的取值范围为$\left[ \frac {\pi}{2},\pi \right)$。故答案为$\left[ \frac {\pi}{2},\pi \right)$。

查看更多完整答案,请扫码查看

关闭