2025年经纶学典学霸黑白题高中数学必修第一册苏教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年经纶学典学霸黑白题高中数学必修第一册苏教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年经纶学典学霸黑白题高中数学必修第一册苏教版》

1. 若$\cos\alpha=\frac{4}{5}$,$\alpha$为第四象限角,则$\sin\alpha$的值为(
B
)

A.$-\frac{4}{5}$
B.$-\frac{3}{5}$
C.$\frac{3}{5}$
D.$\frac{4}{5}$
答案: 1.B 解析:由$\cos \alpha=\frac{4}{5}$,利用$\sin^{2}\alpha+\cos^{2}\alpha=1$可得$\sin^{2}\alpha=\frac{9}{25}$,
则$\sin \alpha=\pm\frac{3}{5}$,又$\alpha$为第四象限角,所以$\sin \alpha<0$,即$\sin \alpha=-\frac{3}{5}$.故选B.
2. (2025·吉林长春高一期末)已知$\sin\alpha=\frac{1}{3}$,$\tan\alpha=-\frac{\sqrt{2}}{4}$,则$\cos\alpha$等于(
A
)

A.$-\frac{2\sqrt{2}}{3}$
B.$\frac{2\sqrt{2}}{3}$
C.$-\frac{1}{3}$
D.$\frac{\sqrt{2}}{4}$
答案: 2.A 解析:因为$\sin \alpha=\frac{1}{3},\tan \alpha=-\frac{\sqrt{2}}{4}$,所以$\cos \alpha=\frac{\sin \alpha}{\tan \alpha}=-\frac{2\sqrt{2}}{3}$.故选A.
3. (2025·江苏南通海门中学高一期中)已知$1-\sin\alpha=\sqrt{2}\cos\alpha$,$\alpha\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$,则$\tan\alpha=$(
B
)

A.$\frac{\sqrt{2}}{4}$
B.$-\frac{\sqrt{2}}{4}$
C.$2\sqrt{2}$
D.$-2\sqrt{2}$
答案: 3.B 解析:由题意$1 - \sin \alpha = \sqrt{2} \cos \alpha$,所以$(\sqrt{2} \cos \alpha + \sin \alpha)^2 = 1 = \cos^{2}\alpha + \sin^{2}\alpha$,化简得$\cos^{2}\alpha + 2\sqrt{2} \cos \alpha \sin \alpha = 0$,因为$\alpha \in (-\frac{\pi}{2},\frac{\pi}{2})$,所以$\cos \alpha \neq 0$,所以$2\sqrt{2} \tan \alpha + 1 = 0$,解得$\tan \alpha = -\frac{\sqrt{2}}{4}$.故选B.
重难点拨
在已知$\sin \theta$和$\cos \theta$的数量关系时,可以结合$\sin^{2}\theta+\cos^{2}\theta=1$构造方程求解$\sin \theta$和$\cos \theta$的值.
4. (2025·江苏南京高一月考)若$8\tan\alpha=3\cos\alpha$,则$\sin\alpha=$
$\frac{1}{3}$
.
答案: 4.$\frac{1}{3}$ 解析:因为$8\tan \alpha = \frac{8\sin \alpha}{\cos \alpha} = 3\cos \alpha$,可得$8\sin \alpha = 3\cos^{2}\alpha \geq 0$,又因为$\sin^{2}\alpha+\cos^{2}\alpha=1$,可得$8\sin \alpha = 3(1 - \sin^{2}\alpha)$,解得$\sin \alpha = \frac{1}{3}$或$\sin \alpha = - 3$(舍去),所以$\sin \alpha = \frac{1}{3}$.故
答案为$\frac{1}{3}$.
5. (2025·江苏南通高一月考)化简$\sqrt{1 - 2\sin44^{\circ}\cos44^{\circ}}$的结果是(
C
)

A.$\sin44^{\circ}+\cos44^{\circ}$
B.$\sin44^{\circ}-\cos44^{\circ}$
C.$\cos44^{\circ}-\sin44^{\circ}$
D.$-\cos44^{\circ}-\sin44^{\circ}$
答案: 5.C 解析:由$0^{\circ}<44^{\circ}<45^{\circ}$,得$\sin 44^{\circ}<\cos 44^{\circ}$,所以$\sqrt{1 - 2\sin 44^{\circ}\cos 44^{\circ}} = \sqrt{\sin^{2}44^{\circ}+\cos^{2}44^{\circ}-2\sin 44^{\circ}\cos 44^{\circ}} = \sqrt{(\sin 44^{\circ}-\cos 44^{\circ})^{2}} = \cos 44^{\circ}-\sin 44^{\circ}$.故选C.
6. 化简$\frac{1}{\sqrt{1 + \tan^{2}160^{\circ}}}$的结果为(
A
)

A.$-\cos160^{\circ}$
B.$\cos160^{\circ}$
C.$\frac{1}{\cos160^{\circ}}$
D.$-\frac{1}{\cos160^{\circ}}$
答案: 6.A 解析:$\frac{1}{\sqrt{1+\tan^{2}160^{\circ}}} = \frac{1}{\sqrt{1+\frac{\sin^{2}160^{\circ}}{\cos^{2}160^{\circ}}}} = \frac{\cos 160^{\circ}}{\sqrt{\cos^{2}160^{\circ}}} = \frac{\cos 160^{\circ}}{|\cos 160^{\circ}|} = - \cos 160^{\circ}$.
故选A.
7. 苏教教材变式 若$\theta$为第二象限角,则$\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} - \sqrt{\frac{1 + \sin\theta}{1 - \sin\theta}}$可化简为
$2\tan \theta$
.
答案: 7.$2\tan \theta$ 解析:因为$\theta$为第二象限角,所以$\sin \theta>0,\cos \theta<0$,
所以原式$=\sqrt{\frac{(1 - \sin \theta)^{2}}{(1 + \sin \theta)(1 - \sin \theta)}} = \sqrt{\frac{(1 + \sin \theta)^{2}}{\cos^{2}\theta}} = \frac{|1 - \sin \theta|}{|\cos \theta|} + \frac{|1 + \sin \theta|}{|\cos \theta|} = \frac{1 - \sin \theta}{-\cos \theta} + \frac{1 + \sin \theta}{-\cos \theta} = \frac{2\sin \theta}{\cos \theta} = 2\tan \theta$.故答案为$2\tan \theta$.
8. 求证:$\sin^{4}\alpha + \sin^{2}\alpha\cos^{2}\alpha + \cos^{2}\alpha = 1$.
答案: 8.证明:左边$=\sin^{2}\alpha(\sin^{2}\alpha+\cos^{2}\alpha)+\cos^{2}\alpha=\sin^{2}\alpha+\cos^{2}\alpha=1=$右边.
9. (2025·广东汕头高一期末)已知角$\alpha$满足$\tan\alpha = -\frac{4}{3}$,则$\frac{\sin\alpha + \cos\alpha}{\sin\alpha}=$(
C
)

A.$-\frac{1}{2}$
B.$-\frac{1}{3}$
C.$\frac{1}{4}$
D.$\frac{7}{3}$
答案: 9.C 解析:由题意,$\frac{\sin \alpha+\cos \alpha}{\sin \alpha}=\frac{\tan \alpha + 1}{\tan \alpha}=\frac{\frac{4}{3}+1}{\frac{4}{3}}=\frac{1}{4}$.故选C.
10. 已知$\frac{1 - 2\sin\alpha\cos\alpha}{\cos^{2}\alpha - \sin^{2}\alpha}=\frac{1}{2}$,则$\tan\alpha=$
$\frac{1}{3}$
.
答案: 10.$\frac{1}{3}$ 解析:因为$\frac{1 - 2\sin \alpha\cos \alpha}{\cos^{2}\alpha - \sin^{2}\alpha} = \frac{\cos^{2}\alpha+\sin^{2}\alpha - 2\sin \alpha\cos \alpha}{\cos^{2}\alpha - \sin^{2}\alpha} = \frac{(\cos \alpha - \sin \alpha)^{2}}{(\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha)} = \frac{\cos \alpha - \sin \alpha}{\cos \alpha + \sin \alpha} = \frac{1 - \tan \alpha}{1 + \tan \alpha} = \frac{1}{2}$,
解得$\tan \alpha = \frac{1}{3}$.
重难点拨
利用弦化切求关于$\sin \alpha$和$\cos \alpha$的齐次式的值的方法:
①对分式上下同除$\cos \alpha$的幂($\cos \alpha$的幂的次数为齐次式的分子、分母的次数),将式子中的$\sin \alpha$和$\cos \alpha$全部转化为$\tan \alpha$,再将$\tan \alpha$的值代入求解;
②若分式的分子分母的次数相差了偶数次,则可以利用$1=\sin^{2}\alpha+\cos^{2}\alpha$,对次数低的部分进行补齐,之后再通过分式上下同除$\cos \alpha$的幂进行弦化切求解.
11. (2025·山东淄博高一月考)已知$\tan\alpha=\frac{3}{4}$,则$2\sin\alpha\cos\alpha - \sin^{2}\alpha + 1=$
.
答案: $\frac{8}{5}$
12. (多选)已知$\sin\alpha\cos\alpha=\frac{1}{8}$,且$\frac{\pi}{4}<\alpha<\frac{\pi}{2}$,则下列结果正确的是(
ACD
)


A.$\sin\alpha + \cos\alpha=\frac{\sqrt{5}}{2}$
B.$\cos\alpha - \sin\alpha=\frac{\sqrt{3}}{2}$
C.$\cos\alpha - \sin\alpha=-\frac{\sqrt{3}}{2}$
D.$\tan\alpha=4 + \sqrt{15}$
答案: 12.ACD 解析:因为$(\sin \alpha+\cos \alpha)^{2}=\sin^{2}\alpha+\cos^{2}\alpha + 2\sin \alpha\cos \alpha = \frac{5}{4}$,且$\frac{\pi}{4}<\alpha<\frac{\pi}{2}$,所以$\sin \alpha+\cos \alpha>0$,所以$\sin \alpha+\cos \alpha=\frac{\sqrt{5}}{2}$,故A正确;$(\cos \alpha - \sin \alpha)^{2}=\cos^{2}\alpha+\sin^{2}\alpha - 2\sin \alpha\cos \alpha = \frac{3}{4}$,且$\frac{\pi}{4}<\alpha<\frac{\pi}{2}$,所以$\sin \alpha>\cos \alpha$所以$\cos \alpha - \sin \alpha=-\frac{\sqrt{3}}{2}$,
B错误,C正确;联立$\begin{cases}\sin \alpha+\cos \alpha=\frac{\sqrt{5}}{2}\\\cos \alpha - \sin \alpha=-\frac{\sqrt{3}}{2}\end{cases}$,
解得$\sin \alpha=\frac{\sqrt{5}+\sqrt{3}}{4}$,
所以$\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=4 + \sqrt{15}$,故D正确.故选ACD.
重难点拨
$\sin \alpha+\cos \alpha,\sin \alpha - \cos \alpha,\sin \alpha\cos \alpha$知一求二:
由$\sin^{2}\alpha+\cos^{2}\alpha=1$可得$(\sin \alpha\pm\cos \alpha)^{2}=1\pm2\sin \alpha\cos \alpha$,因此若已知$\sin \alpha+\cos \alpha,\sin \alpha - \cos \alpha,\sin \alpha\cos \alpha$,就可以利用$(\sin \alpha\pm\cos \alpha)^{2}=1\pm2\sin \alpha\cos \alpha$求出其余两个式子的值.
13. (2025·广东深圳高一期末)已知$\sin\theta + \cos\theta=\frac{4}{3}$,$\theta\in\left(0,\frac{\pi}{4}\right)$,则$\sin\theta - \cos\theta$的值为
$-\frac{\sqrt{2}}{3}$
.
答案: 13.$-\frac{\sqrt{2}}{3}$ 解析:由$\sin \theta+\cos \theta=\frac{4}{3},\theta \in (0,\frac{\pi}{4})$,可得$1>\cos \theta>\sin \theta>0,1 + 2\sin \theta\cos \theta=\frac{16}{9}$,$\therefore 2\sin \theta\cos \theta=\frac{7}{9}$,
$\therefore \sin \theta - \cos \theta = -\sqrt{(\sin \theta - \cos \theta)^{2}} = -\sqrt{1 - 2\sin \theta\cos \theta}=-\frac{\sqrt{2}}{3}$.故答案为$-\frac{\sqrt{2}}{3}$

查看更多完整答案,请扫码查看

关闭