2025年名校题库九年级数学全一册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校题库九年级数学全一册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校题库九年级数学全一册北师大版》

8. (锦江区一诊)如图1,在$□ ABCD$中,$E$,$F分别为DC$,$AB$的中点,连接$AE$,$CF$,且$\angle FCB= \angle FBC$.
(1)求证:四边形$AFCE$是菱形.
(2)如图2,连接$BD交AE于点G$,交$CF于点H$,且$CF\perp BD$,连接$CG$,$CA$.
①求证:$\angle CGB= \angle ACF$;
②若$CG= \sqrt{6}$,求$AB$的长.
答案:
(1)证明:$\because$四边形$ABCD$是平行四边形,
$\therefore AB// CD$,$AB = CD$。
$\because E$,$F$分别为$DC$,$AB$的中点,$\therefore CE = \frac{1}{2}CD$,$AF = BF = \frac{1}{2}AB$,
$\therefore CE = AF$,
$\therefore$四边形$AFCE$是平行四边形。
$\because \angle FCB = \angle FBC$,$\therefore CF = BF$,$\therefore CF = AF$,
$\therefore$四边形$AFCE$是菱形。
(2)①证明:$\because CF = AF = BF = \frac{1}{2}AB$,
$\therefore \angle ACB = 90^{\circ}$。
$\because$四边形$AFCE$是菱形,$\therefore AE// CF$,
$\therefore BH = HG$。
$\because CF\perp BD$,$\therefore CG = BC$,$\therefore \angle BCH = \angle GCH$。
$\because \angle BCH + \angle ACF = \angle CGH + \angle GCH = 90^{\circ}$,$\therefore \angle CGB = \angle ACF$。
②解:$\because CD// AB$,$\therefore \triangle CDH\backsim\triangle FBH$,
$\therefore \frac{CH}{FH} = \frac{CD}{BF}$。
$\because CD = AB = 2BF$,$\therefore \frac{CH}{FH} = 2$。
设$FH = x$,$CH = 2x$,$\therefore AF = BF = CF = 3x$,
$\therefore AB = 6x$。
$\because AE// CF$,$\therefore \angle AGB = \angle FHB = 90^{\circ}$,$AG = 2FH = 2x$,
$\therefore BG = \sqrt{AB^{2} - AG^{2}} = 4\sqrt{2}x$,
$\therefore HG = \frac{1}{2}BG = 2\sqrt{2}x$。
$\because CG^{2} = CH^{2} + HG^{2}$,$\therefore 6 = 4x^{2} + (2\sqrt{2}x)^{2}$,解得$x = \frac{\sqrt{2}}{2}$(舍去负值),$\therefore AB = 6x = 3\sqrt{2}$。
1. (七中育才)如图,在$Rt△ABC$中,$∠BAC= 90^{\circ },AD⊥BC$于点 D.若$\frac {AD}{CD}= \frac {3}{2}$,则$\frac {AB}{AC}= $(
A
)

A. $\frac {3}{2}$
B. $\frac {2}{3}$
C. $\frac {\sqrt {6}}{2}$
D. $\frac {\sqrt {6}}{3}$
答案: A
2. (锦江区一诊)如图,在$△ABC$中,点 D 在线段 BC 上,且$∠BAD= ∠C,BD= 2,CD= 6$,则 AB 的长是 (
C
)

A. 12
B. 8
C. 4
D. 3
答案: C

查看更多完整答案,请扫码查看

关闭