第91页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
8. (2024·苏州期中)如图,在$\mathrm{Rt}△ ABC$中,$∠ ACB = 90^{\circ}$,$CD$是$AB$边上的高,$CE$是$AB$边上的中线,$AD = 3$,$CE = 5$,则$\tan ∠ BCE$的值为(

A.$\dfrac{1}{2}$
B.$\dfrac{\sqrt{21}}{7}$
C.$\dfrac{\sqrt{5}}{5}$
D.$\dfrac{\sqrt{30}}{10}$
B
)A.$\dfrac{1}{2}$
B.$\dfrac{\sqrt{21}}{7}$
C.$\dfrac{\sqrt{5}}{5}$
D.$\dfrac{\sqrt{30}}{10}$
答案:
8. B
9. 如图,在$△ ABC$中,$AD$是$BC$边上的高,$DC = 1$,$BD = 2$,$\tan B = \cos ∠ DAC$,则$AB$的长为

√7
.
答案:
9. √7
10. 在$△ ABC$中,$AB = 3\sqrt{6}$,$AC = 6$,$∠ B = 45^{\circ}$,则$BC =$
3√3 + 3或3√3 - 3
.
答案:
10. 3√3 + 3或3√3 - 3
11. 如图,在四边形$ABCD$中,$∠ ABC = 90^{\circ}$,$∠ ADC = 90^{\circ}$,$AB = 6$,$CD = 4$,$BC$的延长线与$AD$的延长线交于点$E$.
(1)若$∠ A = 60^{\circ}$,求$BC$的长;(结果保留根号)
(2)若$\sin A = \dfrac{4}{5}$,求$AD$的长.

(1)若$∠ A = 60^{\circ}$,求$BC$的长;(结果保留根号)
(2)若$\sin A = \dfrac{4}{5}$,求$AD$的长.
答案:
11. 解:
(1)
∵∠A = 60°, ∠ABE = 90°, AB = 6, tanA = BE/AB,
∴∠E = 30°, BE = 6·tan60° = 6√3.
又
∵∠CDE = 90°, CD = 4, sinE = CD/CE, ∠E = 30°,
∴CE = 4/(1/2) = 8,
∴BC = BE - CE = 6√3 - 8.
(2)
∵∠ABE = 90°, AB = 6, sinA = 4/5 = BE/AE,
∴设BE = 4x, 则AE = 5x, 由勾股定理, 得AB = 3x,
∴3x = 6, 解得x = 2,
∴BE = 8, AE = 10,
∴tanE = AB/BE = 6/8 = CD/DE = 4/DE, 解得DE = 16/3,
∴AD = AE - DE = 10 - 16/3 = 14/3.
(1)
∵∠A = 60°, ∠ABE = 90°, AB = 6, tanA = BE/AB,
∴∠E = 30°, BE = 6·tan60° = 6√3.
又
∵∠CDE = 90°, CD = 4, sinE = CD/CE, ∠E = 30°,
∴CE = 4/(1/2) = 8,
∴BC = BE - CE = 6√3 - 8.
(2)
∵∠ABE = 90°, AB = 6, sinA = 4/5 = BE/AE,
∴设BE = 4x, 则AE = 5x, 由勾股定理, 得AB = 3x,
∴3x = 6, 解得x = 2,
∴BE = 8, AE = 10,
∴tanE = AB/BE = 6/8 = CD/DE = 4/DE, 解得DE = 16/3,
∴AD = AE - DE = 10 - 16/3 = 14/3.
12. (2023·雅安)如图,在四边形$ABCD$中,$AB = AD$,$BC = DC$,$∠ C = 60^{\circ}$,$AE // CD$交$BC$于点$E$,$BC = 8$,$AE = 6$,求$AB$的长.

答案:
12. 解: 如答图, 连接AC, BD交于点O, 过点E作EF⊥AC, 交AC于点F.
∵BC = DC, ∠BCD = 60°,
∴△BCD是等边三角形,
∴BD = BC = CD = 8.
∵AB = AD, BC = DC,
∴AC⊥BD, BO = DO = 1/2BD = 4,
∴∠ACD = ∠ACB = 1/2∠BCD = 30°.
∵AE//CD,
∴∠EAC = ∠ACD = ∠ACB = 30°,
∴AE = EC = 6,
∴CF = CE·cos30° = 6×√3/2 = 3√3,
AF = AE·cos30° = 6×√3/2 = 3√3, CO = BC·cos30° = 8×√3/2 = 4√3,
∴AC = CF + AF = 6√3,
∴AO = AC - CO = 6√3 - 4√3 = 2√3.
在Rt△BOA中,
AB = √(BO² + AO²) = √(4² + (2√3)²) = 2√7.
12. 解: 如答图, 连接AC, BD交于点O, 过点E作EF⊥AC, 交AC于点F.
∵BC = DC, ∠BCD = 60°,
∴△BCD是等边三角形,
∴BD = BC = CD = 8.
∵AB = AD, BC = DC,
∴AC⊥BD, BO = DO = 1/2BD = 4,
∴∠ACD = ∠ACB = 1/2∠BCD = 30°.
∵AE//CD,
∴∠EAC = ∠ACD = ∠ACB = 30°,
∴AE = EC = 6,
∴CF = CE·cos30° = 6×√3/2 = 3√3,
AF = AE·cos30° = 6×√3/2 = 3√3, CO = BC·cos30° = 8×√3/2 = 4√3,
∴AC = CF + AF = 6√3,
∴AO = AC - CO = 6√3 - 4√3 = 2√3.
在Rt△BOA中,
AB = √(BO² + AO²) = √(4² + (2√3)²) = 2√7.
查看更多完整答案,请扫码查看