第75页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
三、解答题
8. (2024·宜兴月考)如图,在平面直角坐标系中,已知$△ ABC$三个顶点的坐标分别是$A(2,2)$,$B(4,0)$,$C(4,-4)$.
(1)$△ ABC$的面积是
(2)以点$O$为位似中心,将$△ ABC$缩小为原来的$\frac{1}{2}$得到$△ A_{1}B_{1}C_{1}$,请在$y$轴右侧画出$△ A_{1}B_{1}C_{1}$;
(3)请用无刻度的直尺在边$AC$上找一点$P$,使得$∠ PBC=∠ BAC$,并保留作图痕迹.

8. (2024·宜兴月考)如图,在平面直角坐标系中,已知$△ ABC$三个顶点的坐标分别是$A(2,2)$,$B(4,0)$,$C(4,-4)$.
(1)$△ ABC$的面积是
4
;(2)以点$O$为位似中心,将$△ ABC$缩小为原来的$\frac{1}{2}$得到$△ A_{1}B_{1}C_{1}$,请在$y$轴右侧画出$△ A_{1}B_{1}C_{1}$;
(3)请用无刻度的直尺在边$AC$上找一点$P$,使得$∠ PBC=∠ BAC$,并保留作图痕迹.
答案:
8.
(1)4
(2)解:如
答图①,$△ A_{1}B_{1}C_{1}$即为所求.
(3)解:如答图②,点P即为所求.

理由:由作图可知$∠ APB=∠ RAC=45^{\circ}$,
$\therefore ∠ CPB=135^{\circ}$.
$\because ∠ ABC=135^{\circ}$,$\therefore ∠ ACB+∠ BAC=45^{\circ}$,$∠ ACB+∠ PBC=45^{\circ}$,$\therefore ∠ PBC=∠ BAC$.
8.
(1)4
(2)解:如
(3)解:如答图②,点P即为所求.
理由:由作图可知$∠ APB=∠ RAC=45^{\circ}$,
$\therefore ∠ CPB=135^{\circ}$.
$\because ∠ ABC=135^{\circ}$,$\therefore ∠ ACB+∠ BAC=45^{\circ}$,$∠ ACB+∠ PBC=45^{\circ}$,$\therefore ∠ PBC=∠ BAC$.
9. (2023·内蒙古)如图,$AB$是$\odot O$的直径,$E$为$\odot O$上的一点,$C$是$\overset{\frown}{AE}$的中点,连接$BC$,过点$C$的直线垂直于$BE$的延长线于点$D$,交$BA$的延长线于点$P$.
(1)求证:$PC$为$\odot O$的切线;
(2)若$PC = 2\sqrt{2}BO$,$PB = 10$,求$BE$的长.

(1)求证:$PC$为$\odot O$的切线;
(2)若$PC = 2\sqrt{2}BO$,$PB = 10$,求$BE$的长.
答案:
9.
(1)证明:如答图,连接OC,
$\because C$是$\overset{\frown}{AE}$的中点,$\therefore ∠ ABC=∠ DBC$.
$\because OC=OB$,$\therefore ∠ ABC=∠ OCB$,
$\therefore ∠ DBC=∠ OCB$,$\therefore OC// DB$.
$\because PD⊥ BD$,$\therefore PD⊥ CO$,$\therefore PC$为$\odot O$的切线.

(2)解:如答图,连接AE,设$OB=OC=r$,
$\because PC=2\sqrt{2}BO=2\sqrt{2}r$,$\therefore OP=\sqrt{r^{2}+(2\sqrt{2}r)^{2}}=3r$.
$\because PB=10$,$\therefore 3r+r=10$,即$r=\frac{5}{2}$.
$\because OC// DB$,$\therefore △ PCO∽ △ PDB$,$\therefore \frac{OC}{BD}=\frac{PO}{PB}$,
$\therefore \frac{\frac{5}{2}}{BD}=\frac{\frac{15}{2}}{10}$,$\therefore BD=\frac{10}{3}$.
$\because AB$是$\odot O$的直径,$\therefore AE⊥ BD$,$\therefore AE// PD$,
$\therefore \frac{BE}{BD}=\frac{BA}{BP}$,$\therefore \frac{BE}{\frac{10}{3}}=\frac{5}{10}$,$\therefore BE=\frac{5}{3}$.
9.
(1)证明:如答图,连接OC,
$\because C$是$\overset{\frown}{AE}$的中点,$\therefore ∠ ABC=∠ DBC$.
$\because OC=OB$,$\therefore ∠ ABC=∠ OCB$,
$\therefore ∠ DBC=∠ OCB$,$\therefore OC// DB$.
$\because PD⊥ BD$,$\therefore PD⊥ CO$,$\therefore PC$为$\odot O$的切线.
(2)解:如答图,连接AE,设$OB=OC=r$,
$\because PC=2\sqrt{2}BO=2\sqrt{2}r$,$\therefore OP=\sqrt{r^{2}+(2\sqrt{2}r)^{2}}=3r$.
$\because PB=10$,$\therefore 3r+r=10$,即$r=\frac{5}{2}$.
$\because OC// DB$,$\therefore △ PCO∽ △ PDB$,$\therefore \frac{OC}{BD}=\frac{PO}{PB}$,
$\therefore \frac{\frac{5}{2}}{BD}=\frac{\frac{15}{2}}{10}$,$\therefore BD=\frac{10}{3}$.
$\because AB$是$\odot O$的直径,$\therefore AE⊥ BD$,$\therefore AE// PD$,
$\therefore \frac{BE}{BD}=\frac{BA}{BP}$,$\therefore \frac{BE}{\frac{10}{3}}=\frac{5}{10}$,$\therefore BE=\frac{5}{3}$.
10. (2024·上海)如图,在矩形$ABCD$中,$E$为边$CD$上一点,且$AE⊥ BD$.
(1)求证:$AD^{2}=DE· DC$;
(2)$F$为线段$AE$延长线上一点,且满足$EF = CF=\frac{1}{2}BD$,求证:$CE = AD$.

(1)求证:$AD^{2}=DE· DC$;
(2)$F$为线段$AE$延长线上一点,且满足$EF = CF=\frac{1}{2}BD$,求证:$CE = AD$.
答案:
10.证明:
(1)$\because$在矩形ABCD中,$∠ BAD=90^{\circ}$,$∠ ADE=90^{\circ}$,
$AB=DC$,$\therefore ∠ ABD+∠ ADB=90^{\circ}$.
$\because AE⊥ BD$,$\therefore ∠ DAE+∠ ADB=90^{\circ}$,
$\therefore ∠ ABD=∠ DAE$.
$\because ∠ BAD=∠ ADE=90^{\circ}$,$\therefore △ ADE∽ △ BAD$,
$\therefore \frac{AD}{BA}=\frac{DE}{AD}$,$\therefore AD^{2}=DE· BA$.
$\because AB=DC$,$\therefore AD^{2}=DE· DC$.
(2)如答图,连接AC交BD于点O.$\because$在矩形ABCD中,
$∠ ADE=90^{\circ}$,$\therefore ∠ DAE+∠ AED=90^{\circ}$.
$\because AE⊥ BD$,$\therefore ∠ DAE+∠ ADB=90^{\circ}$,
$\therefore ∠ ADB=∠ AED$.
$\because ∠ FEC=∠ AED$,$\therefore ∠ ADO=∠ FEC$.
$\because$在矩形ABCD中,$OA=OD=\frac{1}{2}BD$,
又$EF=CF=\frac{1}{2}BD$,$\therefore OA=OD=EF=CF$,
$\therefore ∠ ADO=∠ OAD$,$∠ FEC=∠ FCE$.
$\because ∠ ADO=∠ FEC$,
$\therefore ∠ ADO=∠ OAD=∠ FEC=∠ FCE$.
在$△ ODA$和$△ FEC$中,$\begin{cases} ∠ ODA=∠ FEC, \\ ∠ OAD=∠ FCE, \\ OD=FE, \end{cases}$
$\therefore △ ODA≌ △ FEC(\mathrm{AAS})$,$\therefore CE=AD$.
10.证明:
(1)$\because$在矩形ABCD中,$∠ BAD=90^{\circ}$,$∠ ADE=90^{\circ}$,
$AB=DC$,$\therefore ∠ ABD+∠ ADB=90^{\circ}$.
$\because AE⊥ BD$,$\therefore ∠ DAE+∠ ADB=90^{\circ}$,
$\therefore ∠ ABD=∠ DAE$.
$\because ∠ BAD=∠ ADE=90^{\circ}$,$\therefore △ ADE∽ △ BAD$,
$\therefore \frac{AD}{BA}=\frac{DE}{AD}$,$\therefore AD^{2}=DE· BA$.
$\because AB=DC$,$\therefore AD^{2}=DE· DC$.
(2)如答图,连接AC交BD于点O.$\because$在矩形ABCD中,
$∠ ADE=90^{\circ}$,$\therefore ∠ DAE+∠ AED=90^{\circ}$.
$\because AE⊥ BD$,$\therefore ∠ DAE+∠ ADB=90^{\circ}$,
$\therefore ∠ ADB=∠ AED$.
$\because ∠ FEC=∠ AED$,$\therefore ∠ ADO=∠ FEC$.
$\because$在矩形ABCD中,$OA=OD=\frac{1}{2}BD$,
又$EF=CF=\frac{1}{2}BD$,$\therefore OA=OD=EF=CF$,
$\therefore ∠ ADO=∠ OAD$,$∠ FEC=∠ FCE$.
$\because ∠ ADO=∠ FEC$,
$\therefore ∠ ADO=∠ OAD=∠ FEC=∠ FCE$.
在$△ ODA$和$△ FEC$中,$\begin{cases} ∠ ODA=∠ FEC, \\ ∠ OAD=∠ FCE, \\ OD=FE, \end{cases}$
$\therefore △ ODA≌ △ FEC(\mathrm{AAS})$,$\therefore CE=AD$.
查看更多完整答案,请扫码查看