第69页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
4. 如图,在□ABCD中,AM⊥BC,AN⊥CD,垂足分别为M,N.
求证:(1)△AMB∽△AND;
(2)$\frac{AM}{AB}=\frac{MN}{AC}$.

求证:(1)△AMB∽△AND;
(2)$\frac{AM}{AB}=\frac{MN}{AC}$.
答案:
证明:
(1) $ \because $ 四边形 $ ABCD $ 是平行四边形,
$\therefore ∠ B = ∠ D $.
$\because AM ⊥ BC $, $ AN ⊥ CD $,
$\therefore ∠ AMB = ∠ AND = 90^{\circ}$,
$\therefore △ AMB ∼ △ AND $.
(2) $ \because △ AMB ∼ △ AND $, $ \therefore \frac{AM}{AN} = \frac{AB}{AD} $, $ ∠ BAM = ∠ DAN $.
又 $ \because AD = BC $, $ \therefore \frac{AM}{AN} = \frac{AB}{BC} $.
$\because ∠ B + ∠ BCD = ∠ MAN + ∠ BCD = 180^{\circ}$,
$\therefore ∠ B = ∠ MAN $, $ \therefore △ AMN ∼ △ BAC $, $ \therefore \frac{AM}{AB} = \frac{MN}{AC} $.
(1) $ \because $ 四边形 $ ABCD $ 是平行四边形,
$\therefore ∠ B = ∠ D $.
$\because AM ⊥ BC $, $ AN ⊥ CD $,
$\therefore ∠ AMB = ∠ AND = 90^{\circ}$,
$\therefore △ AMB ∼ △ AND $.
(2) $ \because △ AMB ∼ △ AND $, $ \therefore \frac{AM}{AN} = \frac{AB}{AD} $, $ ∠ BAM = ∠ DAN $.
又 $ \because AD = BC $, $ \therefore \frac{AM}{AN} = \frac{AB}{BC} $.
$\because ∠ B + ∠ BCD = ∠ MAN + ∠ BCD = 180^{\circ}$,
$\therefore ∠ B = ∠ MAN $, $ \therefore △ AMN ∼ △ BAC $, $ \therefore \frac{AM}{AB} = \frac{MN}{AC} $.
5. 如图,P为矩形ABCD的对角线BD上一点,PE⊥AP交BC于点E,若AD=10,DC=6,求$\frac{PA}{PE}$的值.

答案:
解: 如答图, 过点 $ P $ 作 $ AD $ 的垂线 $ MN $, 交 $ AD $ 于点 $ M $, 交 $ BC $ 于点 $ N $. $ \because ∠ APM + ∠ NPE = 180^{\circ} - ∠ APE = 90^{\circ} $, $ ∠ APM + ∠ PAM = 180^{\circ} - ∠ AMP = 90^{\circ} $,
$\therefore ∠ NPE = ∠ PAM $.
又 $ \because ∠ AMP = ∠ PNE = 90^{\circ} $.
$\therefore △ APM ∼ △ PEN $, $ \therefore \frac{PA}{PE} = \frac{AM}{PN} $.
$\because ∠ PNB = ∠ DCB = 90^{\circ} $, $ ∠ PBN = ∠ DBC $,
$\therefore △ BPN ∼ △ BDC $, $ \therefore \frac{BN}{PN} = \frac{BC}{CD} $.
$\because $ 四边形 $ AMNB $, 四边形 $ ADCB $ 均为矩形,
$\therefore AM = BN $, $ AD = BC $,
$\therefore \frac{AM}{PN} = \frac{AD}{CD} = \frac{10}{6} = \frac{5}{3} $, $ \therefore \frac{PA}{PE} = \frac{5}{3} $.
解: 如答图, 过点 $ P $ 作 $ AD $ 的垂线 $ MN $, 交 $ AD $ 于点 $ M $, 交 $ BC $ 于点 $ N $. $ \because ∠ APM + ∠ NPE = 180^{\circ} - ∠ APE = 90^{\circ} $, $ ∠ APM + ∠ PAM = 180^{\circ} - ∠ AMP = 90^{\circ} $,
$\therefore ∠ NPE = ∠ PAM $.
又 $ \because ∠ AMP = ∠ PNE = 90^{\circ} $.
$\therefore △ APM ∼ △ PEN $, $ \therefore \frac{PA}{PE} = \frac{AM}{PN} $.
$\because ∠ PNB = ∠ DCB = 90^{\circ} $, $ ∠ PBN = ∠ DBC $,
$\therefore △ BPN ∼ △ BDC $, $ \therefore \frac{BN}{PN} = \frac{BC}{CD} $.
$\because $ 四边形 $ AMNB $, 四边形 $ ADCB $ 均为矩形,
$\therefore AM = BN $, $ AD = BC $,
$\therefore \frac{AM}{PN} = \frac{AD}{CD} = \frac{10}{6} = \frac{5}{3} $, $ \therefore \frac{PA}{PE} = \frac{5}{3} $.
6. 已知正方形ABCD,E是对角线AC上一点.
(1)如图①,连接BE,DE. 求证:△ABE≌△ADE;
(2)如图②,F是DE延长线上一点,DF交AB于点G,BF⊥BE. 判断△FBG的形状并说明理由;
(3)在(2)的条件下,若BE=BF=2,求$\frac{AE}{AB}$的值.

(1)如图①,连接BE,DE. 求证:△ABE≌△ADE;
(2)如图②,F是DE延长线上一点,DF交AB于点G,BF⊥BE. 判断△FBG的形状并说明理由;
(3)在(2)的条件下,若BE=BF=2,求$\frac{AE}{AB}$的值.
答案:
(1) 证明: $ \because $ 四边形 $ ABCD $ 是正方形,
$\therefore AB = AD = CB = CD $, $ ∠ ABC = ∠ ADC = 90^{\circ} $,
$\therefore ∠ BAC = ∠ BCA = ∠ DAC = ∠ DCA = 45^{\circ} $.
在 $ △ ABE $ 和 $ △ ADE $ 中, $ \begin{cases} AB = AD, \\ ∠ BAE = ∠ DAE, \\ AE = AE, \end{cases} $
$\therefore △ ABE ≌ △ ADE (\mathrm{SAS}) $.
(2) 解: $ △ FBG $ 是等腰三角形, 理由如下:
$\because △ ABE ≌ △ ADE $,
$\therefore ∠ ABE = ∠ ADE $, $ \therefore ∠ ABC - ∠ ABE = ∠ ADC - ∠ ADE $, $ \therefore ∠ EBC = ∠ EDC $.
$\because AB // CD $, $ \therefore ∠ FGB = ∠ EDC $, $ \therefore ∠ FGB = ∠ EBC $.
$\because BF ⊥ BE $, $ \therefore ∠ FBE = 90^{\circ} $, $ \therefore ∠ FBG = ∠ EBC = 90^{\circ} - ∠ ABE $, $ \therefore ∠ FGB = ∠ FBG $, $ \therefore BF = GF $, $ \therefore △ FBG $ 是等腰三角形.
(3) 解: $ \because BE = BF = 2 $, $ ∠ FBE = 90^{\circ} $, $ \therefore ∠ F = ∠ BEF = 45^{\circ} $, $ \therefore ∠ BAC = ∠ F $, $ \therefore ∠ AEG = ∠ FBG $.
$\because ∠ AGE = ∠ FGB $ 且 $ ∠ FGB = ∠ FBG $,
$\therefore ∠ AGE = ∠ AEG $, $ \therefore AE = AG $.
$\because EF = \sqrt{BE^2 + BF^2} = \sqrt{2^2 + 2^2} = 2\sqrt{2} $, $ BF = GF = 2 $,
$\therefore GE = EF - GF = 2\sqrt{2} - 2 $.
$\because △ ABE ≌ △ ADE $, $ \therefore BE = DE = 2 $.
$\because AG // CD $, $ \therefore △ AGE ∼ △ CDE $,
$\therefore \frac{AG}{CD} = \frac{GE}{DE} = \frac{2\sqrt{2} - 2}{2} = \sqrt{2} - 1 $, $ \therefore \frac{AE}{AB} = \sqrt{2} - 1 $.
(1) 证明: $ \because $ 四边形 $ ABCD $ 是正方形,
$\therefore AB = AD = CB = CD $, $ ∠ ABC = ∠ ADC = 90^{\circ} $,
$\therefore ∠ BAC = ∠ BCA = ∠ DAC = ∠ DCA = 45^{\circ} $.
在 $ △ ABE $ 和 $ △ ADE $ 中, $ \begin{cases} AB = AD, \\ ∠ BAE = ∠ DAE, \\ AE = AE, \end{cases} $
$\therefore △ ABE ≌ △ ADE (\mathrm{SAS}) $.
(2) 解: $ △ FBG $ 是等腰三角形, 理由如下:
$\because △ ABE ≌ △ ADE $,
$\therefore ∠ ABE = ∠ ADE $, $ \therefore ∠ ABC - ∠ ABE = ∠ ADC - ∠ ADE $, $ \therefore ∠ EBC = ∠ EDC $.
$\because AB // CD $, $ \therefore ∠ FGB = ∠ EDC $, $ \therefore ∠ FGB = ∠ EBC $.
$\because BF ⊥ BE $, $ \therefore ∠ FBE = 90^{\circ} $, $ \therefore ∠ FBG = ∠ EBC = 90^{\circ} - ∠ ABE $, $ \therefore ∠ FGB = ∠ FBG $, $ \therefore BF = GF $, $ \therefore △ FBG $ 是等腰三角形.
(3) 解: $ \because BE = BF = 2 $, $ ∠ FBE = 90^{\circ} $, $ \therefore ∠ F = ∠ BEF = 45^{\circ} $, $ \therefore ∠ BAC = ∠ F $, $ \therefore ∠ AEG = ∠ FBG $.
$\because ∠ AGE = ∠ FGB $ 且 $ ∠ FGB = ∠ FBG $,
$\therefore ∠ AGE = ∠ AEG $, $ \therefore AE = AG $.
$\because EF = \sqrt{BE^2 + BF^2} = \sqrt{2^2 + 2^2} = 2\sqrt{2} $, $ BF = GF = 2 $,
$\therefore GE = EF - GF = 2\sqrt{2} - 2 $.
$\because △ ABE ≌ △ ADE $, $ \therefore BE = DE = 2 $.
$\because AG // CD $, $ \therefore △ AGE ∼ △ CDE $,
$\therefore \frac{AG}{CD} = \frac{GE}{DE} = \frac{2\sqrt{2} - 2}{2} = \sqrt{2} - 1 $, $ \therefore \frac{AE}{AB} = \sqrt{2} - 1 $.
查看更多完整答案,请扫码查看