第80页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
8. $(-\frac{1}{2}ab^{3})^{3}\cdot (-\frac{1}{4}ab)\cdot (-8a^{2}b^{2})^{2}$ 等于(
A.$2a^{8}b^{14}$
B.$-2a^{8}b^{14}$
C.$a^{8}b^{11}$
D.$-a^{8}b^{11}$
A
)A.$2a^{8}b^{14}$
B.$-2a^{8}b^{14}$
C.$a^{8}b^{11}$
D.$-a^{8}b^{11}$
答案:
A
9. 若 $(-2x^{2}y^{3})^{m}\cdot (xy)^{n}= ax^{7}y^{9}$,则常数 $a$ 的值为(
A.$8$
B.$-8$
C.$4$
D.$-4$
C
)A.$8$
B.$-8$
C.$4$
D.$-4$
答案:
C
10. 若单项式 $-5x^{3a - 2b}y$ 与 $6x^{3}y^{a - b}$ 是同类项,则这两个单项式的积为
$-30x^{6}y^{2}$
。
答案:
$-30x^{6}y^{2}$
11. (科技发展情境)北斗卫星导航系统是中国正在实施的自主发展、独立运行的全球卫星导航系统,已知某北斗卫星绕地球运动的速度是 $7.9× 10^{3}m/s$,当卫星绕地球运行 $2× 10^{3}s$ 时,所走过的路程为
$1.58×10^{7}$
m. (结果用科学记数法表示)
答案:
$1.58×10^{7}$
12. 先化简,再求值:$(-2a^{2}b^{3})\cdot (-ab^{2})^{2}+(-\frac{1}{2}a^{2}b^{3})^{2}\cdot 4b$,其中 $a = 2,b = 1$。
答案:
解:原式$=(-2a^{2}b^{3})\cdot a^{2}b^{4}+\frac{1}{4}a^{4}b^{5}\cdot4b=-2a^{4}b^{7}+a^{4}b^{7}=-a^{4}b^{7}$.当$a=2,b=1$时,原式$=-2^{4}×1^{7}=-16$.
13. 已知单项式 $9a^{m + 1}b^{n + 1}$ 与 $-2a^{2m - 1}b^{2n - 1}$ 的积与 $5a^{3}b^{6}$ 是同类项,求 $m,n$ 的值。
答案:
解:$9a^{m+1}b^{n+1}\cdot(-2a^{2m-1}b^{2n-1})=9×(-2)\cdot a^{m+1}\cdot a^{2m-1}\cdot b^{n+1}\cdot b^{2n-1}=-18a^{3m}b^{3n}$.$\because-18a^{3m}b^{3n}$与$5a^{3}b^{6}$是同类项,$\therefore3m=3,3n=6$,解得$m=1,n=2$.
14. (数学应用)如图,是小丽家的住房结构平面图(单位:米).
(1)求房屋的总面积;
(2)小丽家打算在客厅铺每平方米 $a$ 元的地砖,在卧室铺每平方米 $b$ 元的木地板,则购买客厅地砖和卧室地板共需要多少元?(用代数式表示)

(1)求房屋的总面积;
(2)小丽家打算在客厅铺每平方米 $a$ 元的地砖,在卧室铺每平方米 $b$ 元的木地板,则购买客厅地砖和卧室地板共需要多少元?(用代数式表示)
答案:
(1)解:$S_{总}=5x\cdot4y-(4y-y-2y)(5x-x-2x)=20xy-y\cdot2x=18xy$(平方米);
(2)客厅费用为$2y\cdot(5x-2x)\cdot a=6axy$(元),卧室费用为$2x\cdot(4y-y)\cdot b=6bxy$(元),总费用为$(6axy+6bxy)$元.答:购买客厅地砖和卧室地板共需要$(6axy+6bxy)$元.
(1)解:$S_{总}=5x\cdot4y-(4y-y-2y)(5x-x-2x)=20xy-y\cdot2x=18xy$(平方米);
(2)客厅费用为$2y\cdot(5x-2x)\cdot a=6axy$(元),卧室费用为$2x\cdot(4y-y)\cdot b=6bxy$(元),总费用为$(6axy+6bxy)$元.答:购买客厅地砖和卧室地板共需要$(6axy+6bxy)$元.
查看更多完整答案,请扫码查看