第26页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
1. (1)在Rt△ABC中,∠B=90°,BC=2,∠C=30°,求AB的长;
答案:
2√3/3
在Rt△ABC中,∠B=90°,∠C=30°,
∴AC=2AB.设AB=x,则AC=2x.由勾股定理得AB²+BC²=AC²,x²+2²=(2x)²,x²+4=4x²,3x²=4,x=2√3/3,即AB=2√3/3.
在Rt△ABC中,∠B=90°,∠C=30°,
∴AC=2AB.设AB=x,则AC=2x.由勾股定理得AB²+BC²=AC²,x²+2²=(2x)²,x²+4=4x²,3x²=4,x=2√3/3,即AB=2√3/3.
(2)在Rt△ABC中,∠C=90°,∠B=45°,AB=2√2,求AC的长;
答案:
2
在Rt△ABC中,∠C=90°,∠B=45°,
∴AC=BC.设AC=BC=x,由勾股定理得AC²+BC²=AB²,x²+x²=(2√2)²,2x²=8,x²=4,x=2,即AC=2.
在Rt△ABC中,∠C=90°,∠B=45°,
∴AC=BC.设AC=BC=x,由勾股定理得AC²+BC²=AB²,x²+x²=(2√2)²,2x²=8,x²=4,x=2,即AC=2.
(3)在Rt△ABC中,∠C=90°,a:b=3:4,c=25cm,求a的值.
答案:
15 cm
设a=3k,b=4k,∠C=90°,由勾股定理得a²+b²=c²,(3k)²+(4k)²=25²,9k²+16k²=625,25k²=625,k²=25,k=5,
∴a=3k=15 cm.
设a=3k,b=4k,∠C=90°,由勾股定理得a²+b²=c²,(3k)²+(4k)²=25²,9k²+16k²=625,25k²=625,k²=25,k=5,
∴a=3k=15 cm.
2. 在数轴上作出表示√2的点.
答案:
略(作图步骤:在数轴上原点O处作垂线,截取OA=1,连接O与(1,1)点,以O为圆心,该线段长为半径画弧,交数轴正半轴于点P,则P表示√2)
查看更多完整答案,请扫码查看