第18页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
7. (1)若$\sqrt{x - 3}$在实数范围内有意义,则$x$的取值范围是( ).
A.$x>0$ B.$x>3$ C.$x\geq3$ D.$x\leq3$
(2)当$x$______时,式子$\sqrt{x + 2}$有意义。
A.$x>0$ B.$x>3$ C.$x\geq3$ D.$x\leq3$
(2)当$x$______时,式子$\sqrt{x + 2}$有意义。
答案:
(1)C;
(2)$\geq -2$
解析:
(1)二次根式有意义需$x - 3\geq0\Rightarrow x\geq3$,选C;
(2)$x + 2\geq0\Rightarrow x\geq -2$。
(1)C;
(2)$\geq -2$
解析:
(1)二次根式有意义需$x - 3\geq0\Rightarrow x\geq3$,选C;
(2)$x + 2\geq0\Rightarrow x\geq -2$。
14. (1)(2021广东省)设$6 - \sqrt{10}$的整数部分为$a$,小数部分为$b$,则$(2a + \sqrt{10})b$的值是( ).
A.6 B.$2\sqrt{10}$ C.12 D.$9\sqrt{10}$
(2)(2024年广州市番禺区期末)已知$a,b$分别是$6 - \sqrt{5}$的整数部分和小数部分,
①分别写出$a,b$的值; ②求$3a + b^2$的值。
A.6 B.$2\sqrt{10}$ C.12 D.$9\sqrt{10}$
(2)(2024年广州市番禺区期末)已知$a,b$分别是$6 - \sqrt{5}$的整数部分和小数部分,
①分别写出$a,b$的值; ②求$3a + b^2$的值。
答案:
(1)A;
(2)①$a=3$,$b=3 - \sqrt{5}$;②$23 - 6\sqrt{5}$
解析:
(1)$6 - \sqrt{10}\approx2.84$,$a=2$,$b=4 - \sqrt{10}$,$(2×2 + \sqrt{10})(4 - \sqrt{10})=16 - 10=6$,选A;
(2)①$6 - \sqrt{5}\approx3.76$,$a=3$,$b=6 - \sqrt{5}-3=3 - \sqrt{5}$;
②$3a + b^2=9 + (3 - \sqrt{5})^2=9 + 9 - 6\sqrt{5}+5=23 - 6\sqrt{5}$。
(1)A;
(2)①$a=3$,$b=3 - \sqrt{5}$;②$23 - 6\sqrt{5}$
解析:
(1)$6 - \sqrt{10}\approx2.84$,$a=2$,$b=4 - \sqrt{10}$,$(2×2 + \sqrt{10})(4 - \sqrt{10})=16 - 10=6$,选A;
(2)①$6 - \sqrt{5}\approx3.76$,$a=3$,$b=6 - \sqrt{5}-3=3 - \sqrt{5}$;
②$3a + b^2=9 + (3 - \sqrt{5})^2=9 + 9 - 6\sqrt{5}+5=23 - 6\sqrt{5}$。
查看更多完整答案,请扫码查看