2025年精英新课堂九年级数学全一册北师大版贵州专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年精英新课堂九年级数学全一册北师大版贵州专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年精英新课堂九年级数学全一册北师大版贵州专版》

5. 如图,在$\triangle ABC$中,点$D$在边$BC$上,$E$为$AD$上一点,连接$CE$. 若$\angle DAC = \angle B$,$CD = CE$,求证:$CD\cdot BD = AD\cdot AE$.

答案: 证明:$\because CD = CE$,$\therefore \angle CED=\angle CDE$.$\therefore \angle CEA=\angle ADB$.$\because \angle DAC=\angle B$,$\therefore \triangle CEA\backsim\triangle ADB$.$\therefore \frac{CE}{AD}=\frac{AE}{BD}$.$\therefore \frac{CD}{AD}=\frac{AE}{BD}$.$\therefore CD\cdot BD = AD\cdot AE$.
6. 如图,在$\triangle ABC$中,$AB = AC = 16$,$D$是$BC$上一点,$E$是$AC$上一点,$\angle ADE = \angle C$. 若$CE:BD = 3:4$,则$CD$的长为(   )
A. 12
B. 10
C. 8
D. 6
答案: A
7. 如图,在正方形$ABCD$中,$AB = 9$,$E$为$BC$上一点,过点$E$作$EF\perp AE$,交$CD$于点$F$,连接$AF$.
(1)求证:$\triangle ABE\sim\triangle ECF$;
(2)当$BE = 3$时,求$CF$的长.
答案:
(1) 证明:$\because$四边形$ABCD$是正方形,$\therefore \angle B=\angle C = 90^{\circ}$.$\therefore \angle BAE+\angle AEB = 90^{\circ}$.$\because EF\perp AE$,$\therefore \angle AEF = 90^{\circ}$.$\therefore \angle AEB+\angle CEF = 90^{\circ}$.$\therefore \angle BAE=\angle CEF$.$\therefore \triangle ABE\backsim\triangle ECF$.
(2) 解:$\because$四边形$ABCD$是正方形,$\therefore BC = AB = 9$.$\because BE = 3$,$\therefore EC = BC - BE = 6$.$\because \triangle ABE\backsim\triangle ECF$,$\therefore \frac{AB}{EC}=\frac{BE}{CF}$.$\therefore \frac{9}{6}=\frac{3}{CF}$.$\therefore CF = 2$.
8. 如图,$\triangle ABC$和$\triangle CEF$均为等腰直角三角形,$\angle ABC = \angle CFE = 90^{\circ}$,点$E$在$\triangle ABC$内,$\angle CAE+\angle CBE = 90^{\circ}$,连接$BF$.
(1)求证:$\triangle CAE\sim\triangle CBF$;
(2)若$BE = 1$,$AE = 2$,求$CE$的长.
答案:
(1) 证明:$\because \triangle ABC$和$\triangle CEF$均为等腰直角三角形,$\therefore \angle ACB=\angle ECF = 45^{\circ}$.$\therefore \angle ACB-\angle ECB=\angle ECF-\angle ECB$,即$\angle ACE=\angle BCF$. 易得$\frac{AC}{BC}=\frac{CE}{CF}=\sqrt{2}$,$\therefore \triangle CAE\backsim\triangle CBF$.
(2) 解:$\because \triangle CAE\backsim\triangle CBF$,$\therefore \angle CAE=\angle CBF$,$\frac{AE}{BF}=\frac{AC}{BC}=\sqrt{2}$.$\because AE = 2$,$\therefore BF=\sqrt{2}$.$\because \angle CAE+\angle CBE = 90^{\circ}$,$\therefore \angle CBF+\angle CBE = 90^{\circ}$,即$\angle EBF = 90^{\circ}$. 在$Rt\triangle EBF$中,$EF=\sqrt{BE^{2}+BF^{2}}=\sqrt{3}$.$\because \triangle CEF$是等腰直角三角形,$\therefore CF = EF=\sqrt{3}$.$\therefore CE=\sqrt{EF^{2}+CF^{2}}=\sqrt{6}$.

查看更多完整答案,请扫码查看

关闭