2025年精英新课堂九年级数学全一册北师大版贵州专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年精英新课堂九年级数学全一册北师大版贵州专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年精英新课堂九年级数学全一册北师大版贵州专版》

6.(2023 - 2024·贵阳期末)如图,在矩形ABCD中,对角线AC,BD交于点O. 若$\angle AOB = 60^{\circ}$,$AB = 2$,则对角线AC的长是 ( )
(第6题图)
A. 4
B. 3
C. 2
D. 1
答案: A
7.(2023·兰州中考)如图,在矩形ABCD中,E为BA延长线上一点,F为CE的中点,以点B为圆心,BF长为半径的圆弧过AD与CE的交点G,连接BG. 若$AB = 4$,$CE = 10$,则AG的长为 ( )
(第7题图)
A. 2
B. 2.5
C. 3
D. 3.5
答案: C
8.(2023·大庆中考)如图,在$\square ABCD$中,E为线段CD的中点,连接AC,AE,延长AE,BC交于点F,连接DF,$\angle ACF = 90^{\circ}$.
(1)求证:四边形ACFD是矩形;
(2)若$CD = 13$,$CF = 5$,求四边形ABCE的面积.
答案: (1)证明:$\because$四边形$ABCD$是平行四边形,$\therefore AD// BC$。$\therefore\angle ADE=\angle FCE$,$\angle DAE=\angle CFE$。$\because E$为线段$CD$的中点,$\therefore DE = CE$。$\therefore\triangle ADE\cong\triangle FCE(AAS)$。$\therefore AE = FE$。$\therefore$四边形$ACFD$是平行四边形。$\because\angle ACF = 90^{\circ}$,$\therefore$四边形$ACFD$是矩形。
(2)解:$\because$四边形$ACFD$是矩形,$\therefore\angle CFD = 90^{\circ}$,$AC = DF$,$AD = CF$。$\because CD = 13$,$CF = 5$,$\therefore AC = DF=\sqrt{CD^{2}-CF^{2}} = 12$。$\therefore S_{\triangle ADE}=\frac{1}{4}S_{矩形ACFD}=\frac{1}{4}CF\cdot DF = 15$,$S_{\square ABCD}=AD\cdot AC = 60$。$\therefore S_{四边形ABCE}=S_{\square ABCD}-S_{\triangle ADE}=45$。
9. 已知菱形ABCD,下列条件中,不能判定这个菱形为正方形的是 ( )
A. $\angle A=\angle B$
B. $\angle A=\angle C$
C. $AC = BD$
D. $AB\perp BC$
答案: B
10. 如图,O为正方形ABCD对角线AC的中点,$\triangle ACE$为等边三角形. 若$AB = 2$,则OE的长为_____.
答案: $\sqrt{6}$
11. 如图,在$Rt\triangle CEF$中,$\angle C = 90^{\circ}$,$\angle CEF$,$\angle CFE$外角平分线交于点A,过点A分别作直线CE,CF的垂线,垂足为B,D.
(1)$\angle EAF$的度数为________;
(2)①求证:四边形ABCD是正方形;
②若$BE = EC = 3$,求DF的长.
答案: (1)解:$45^{\circ}$
(2)①证明:过点$A$作$AG\perp EF$于点$G$。$\because AB\perp CE$,$AD\perp CF$,$\therefore\angle B=\angle D = 90^{\circ}=\angle C$。$\therefore$四边形$ABCD$是矩形。$\because\angle CEF$,$\angle CFE$外角平分线交于点$A$,$\therefore AB = AG$,$AD = AG$。$\therefore AB = AD$。$\therefore$四边形$ABCD$是正方形。
②解:$\because BE = EC = 3$,$\therefore BC = 6$。由①知四边形$ABCD$是正方形,$\therefore CD = BC = 6$。在$Rt\triangle ABE$与$Rt\triangle AGE$中,$\begin{cases}AE = AE\\AB = AG\end{cases}$,$\therefore Rt\triangle ABE\cong Rt\triangle AGE(HL)$。$\therefore EG = BE = 3$。同理可得$GF = DF$。设$DF = x$,则$GF = x$,$FC = 6 - x$。$\therefore EF = x + 3$。在$Rt\triangle CEF$中,$EC^{2}+FC^{2}=EF^{2}$,即$3^{2}+(6 - x)^{2}=(x + 3)^{2}$,解得$x = 2$。$\therefore DF = 2$。

查看更多完整答案,请扫码查看

关闭