2025年精英新课堂九年级数学全一册北师大版贵州专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年精英新课堂九年级数学全一册北师大版贵州专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年精英新课堂九年级数学全一册北师大版贵州专版》

8. 如图,在Rt△ABC中,∠B = 90°,∠A = 30°,AC = 6,点D在AB上,连接CD. 若$\tan\angle DCB=\frac{2}{3}$,则BD的长为( )
(第8题图)
A. 2
B. 3
C. 4
D. 2$\sqrt{3}$
答案: A
9. 如图,在Rt△ABC中,∠C = 90°,点D在AC上,∠DBC = ∠A. 若AC = 4,$\cos A=\frac{4}{5}$,则BD的长为( )
(第9题图)
A. $\frac{9}{4}$
B. $\frac{12}{5}$
C. $\frac{15}{4}$
D. 4
答案: C
10.【注重分类讨论思想】在△ABC中,∠B = 30°,AB = $\sqrt{3}$,AC = 1,则∠ACB的度数为__________.
答案: 60°或120°
11. 暴雨过后,校园的两棵风景树同时侧倾在一起,如图,低树CD正好抵着高树AB的中点D. 救援人员想知道高树比低树高多少(即AB - CD的值),就通过测量得到了以下数据:BC = 10.5 m,∠B≈53°,∠C≈45°,取$\tan53^{\circ}\approx\frac{4}{3}$.
(1)设DE = 4x m,则用含x的代数式表示BE = ________m,CE = ________m. 由此列方程求解得x = ________;
(2)求高树比低树高多少米.($\sqrt{2}$取1.4)
答案: 解:
(1)3x 4x 1.5
(2)由
(1),得BE = 4.5m,CE = 6m,DE = 6m,
∴BD = $\sqrt{DE^{2}+BE^{2}}$ = 7.5m,CD = $\sqrt{DE^{2}+CE^{2}}$ = 6$\sqrt{2}$≈8.4m.
∵D是AB的中点,
∴AB = 2BD = 15m.
∴AB - CD = 15 - 8.4 = 6.6(m).答:高树比低树高6.6m.
12. 如图,在Rt△ABC中,∠ACB = 90°,D是边AB的中点,过点B作BE⊥CD,交CD的延长线于点E,AC = 30,$\sin\angle ABC=\frac{3}{5}$.
(1)求线段CD的长;
(2)求$\cos\angle BDE$的值.
答案: 解:
(1)在Rt△ABC中,AC = 30,sin∠ABC = $\frac{3}{5}$,
∴AB = $\frac{AC}{\sin\angle ABC}$ = 50.
∵D是边AB的中点,
∴CD = $\frac{1}{2}$AB = 25.
(2)由勾股定理,得BC = $\sqrt{AB^{2}-AC^{2}}$ = 40.
∵D是边AB的中点,∠ACB = 90°,
∴CD = BD = $\frac{1}{2}$AB = 25.
∴∠BCE = ∠ABC.
∴sin∠BCE = sin∠ABC = $\frac{3}{5}$.
∵BE⊥CD,
∴∠E = 90°.在Rt△BCE中,BC = 40,
∴BE = BC·sin∠BCE = 24.
∴DE = $\sqrt{BD^{2}-BE^{2}}$ = 7.
∴cos∠BDE = $\frac{DE}{BD}$ = $\frac{7}{25}$.
13. 如图,在Rt△ABC中,∠C = 90°,D为边BC上一点,AB = 5,BD = 1,$\tan B=\frac{3}{4}$.
(1)求AD的长;
(2)求$\sin\alpha$的值.
答案: 解:
(1)
∵tanB = $\frac{3}{4}$,
∴可设AC = 3x,则BC = 4x.
∵AC² + BC² = AB²,
∴(3x)² + (4x)² = 5²,解得x = 1(负值已舍去).
∴AC = 3,BC = 4.
∵BD = 1,
∴CD = BC - BD = 3.在Rt△ACD中,AD = $\sqrt{CD^{2}+AC^{2}}$ = 3$\sqrt{2}$.
(2)过点D作DE⊥AB于点E.
∵tanB = $\frac{3}{4}$,
∴可设DE = 3y,则BE = 4y.
∵DE² + BE² = BD²,
∴(3y)² + (4y)² = 1²,解得y = $\frac{1}{5}$(负值已舍去).
∴DE = $\frac{3}{5}$.
∴sinα = $\frac{DE}{AD}$ = $\frac{\sqrt{2}}{10}$.

查看更多完整答案,请扫码查看

关闭