2025年精英新课堂九年级数学全一册北师大版贵州专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年精英新课堂九年级数学全一册北师大版贵州专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年精英新课堂九年级数学全一册北师大版贵州专版》

1. 如图,在Rt△ABC中,∠C = 90°,AB = 5,AC = 4,则sin B的值为( )
(第1题图)
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. $\frac{3}{5}$
D. $\frac{4}{5}$
答案: D
2. 如图,在Rt△ABC中,∠C = 90°. 若AC = 2BC,则sin A的值为( )
(第2题图)
A. $\frac{1}{2}$
B. 2
C. $\frac{\sqrt{5}}{2}$
D. $\frac{\sqrt{5}}{5}$
答案: D
3. 在△ABC中,∠B = 90°. 若AC = 100,sin A = $\frac{3}{5}$,则AB的长是____.
答案: 80
4. 如图,在Rt△ABC中,∠C = 90°,sin A = $\frac{4}{5}$,AB = 15,求sin B和△ABC的周长.
答案: 解:$\because\sin A=\frac{BC}{AB}=\frac{BC}{15}=\frac{4}{5}$,$\therefore BC = 12$. 在$Rt\triangle ABC$中,由勾股定理,得$AC=\sqrt{AB^{2}-BC^{2}} = 9$.$\therefore\sin B=\frac{AC}{AB}=\frac{9}{15}=\frac{3}{5}$,$\triangle ABC$的周长为$AB + AC+BC = 36$.
5. 如图,△ABC的三个顶点都在正方形网格的格点上,则cos ∠BAC的值为( )
(第5题图)
A. 1
B. $\frac{3}{5}$
C. $\frac{4}{5}$
D. $\frac{3}{4}$
答案: B
6. 如图,在Rt△ABC中,∠C = 90°,AB = 13,BC = 5,则cos A的值是( )
(第6题图)
A. $\frac{5}{13}$
B. $\frac{5}{12}$
C. $\frac{12}{5}$
D. $\frac{12}{13}$
答案: D
7. 在△ABC中,∠C = 90°.
(1)若cos A = $\frac{1}{2}$,AC = 4,则AB的长为____;
(2)若AC∶AB = 3∶5,则cos B的值为____.
答案:
(1) 8
(2)$\frac{4}{5}$
8. 如图,在四边形ABCD中,∠B = 90°,AB = 2,CD = 8,AC⊥CD,且cos ∠BAC = $\frac{1}{3}$.
(1)求AC的长;
(2)求cos D的值.
答案: 解:
(1)$\because\angle B = 90^{\circ}$,$AB = 2$,$\cos\angle BAC=\frac{1}{3}$,$\therefore AC=\frac{AB}{\cos\angle BAC}=6$.
(2)$\because AC\perp CD$,$\therefore\angle ACD = 90^{\circ}$.$\because AC = 6$,$CD = 8$,$\therefore AD=\sqrt{AC^{2}+CD^{2}} = 10$.$\therefore\cos D=\frac{CD}{AD}=\frac{8}{10}=\frac{4}{5}$.
9. 在Rt△ABC中,∠C = 90°,AB = 13,AC = 5,下列结论正确的是( )
A. tan B = $\frac{12}{5}$
B. tan A = $\frac{5}{12}$
C. sin A = $\frac{12}{13}$
D. cos B = $\frac{5}{13}$
答案: C
10. 如图,在Rt△ABC中,∠C = 90°,D为AC上的一点,CD = 3,AD = BD = 5,求sin A,cos A,tan A的值.
答案: 解:$\because\angle C = 90^{\circ}$,$CD = 3$,$BD = 5$,$\therefore BC=\sqrt{BD^{2}-CD^{2}} = 4$.$\because AC = AD+CD = 5 + 3 = 8$,$\therefore AB=\sqrt{AC^{2}+BC^{2}} = 4\sqrt{5}$.$\therefore\sin A=\frac{BC}{AB}=\frac{4}{4\sqrt{5}}=\frac{\sqrt{5}}{5}$,$\cos A=\frac{AC}{AB}=\frac{8}{4\sqrt{5}}=\frac{2\sqrt{5}}{5}$,$\tan A=\frac{BC}{AC}=\frac{4}{8}=\frac{1}{2}$.

查看更多完整答案,请扫码查看

关闭