2025年精英新课堂九年级数学全一册北师大版贵州专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年精英新课堂九年级数学全一册北师大版贵州专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第10页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
8.【注重情境化设题】要检验一个四边形的桌面是否为矩形,可行的测量方案是 ( )
A. 测量两条对角线是否相等
B. 测量其中两个角是否是90°
C. 测量两条对角线的交点到四个顶点的距离是否相等
D. 测量两组对边是否分别相等
A. 测量两条对角线是否相等
B. 测量其中两个角是否是90°
C. 测量两条对角线的交点到四个顶点的距离是否相等
D. 测量两组对边是否分别相等
答案:
C
9. 如图,四边形ABCD为平行四边形,延长AD到点E,使DE = AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是 ( )

A. AB = BE
B. CE⊥DE
C. ∠ADB = 90°
D. BE⊥AB
A. AB = BE
B. CE⊥DE
C. ∠ADB = 90°
D. BE⊥AB
答案:
D
10.【半开放性试题】(2023·岳阳中考)如图,点M在□ABCD的边AD上,BM = CM. 有以下三个选项:①∠1 = ∠2;②AM = DM;③∠3 = ∠4,选择一个合适的选项作为已知条件,使□ABCD为矩形.
(1)你添加的条件是________;(填序号)
(2)添加条件后,求证:□ABCD为矩形.

(1)你添加的条件是________;(填序号)
(2)添加条件后,求证:□ABCD为矩形.
答案:
答案不唯一,如:
(1)解:①
(2)证明:$\because$四边形$ABCD$为平行四边形,$\therefore AB// DC$,$AB = DC$.$\therefore\angle A+\angle D = 180^{\circ}$.在$\triangle ABM$和$DCM$中,$\begin{cases}AB = DC,\\\angle1=\angle2,\\BM = CM,\end{cases}$ $\therefore\triangle ABM\cong DCM(SAS)$.$\therefore\angle A=\angle D = 90^{\circ}$.$\therefore\square ABCD$为矩形.
(1)解:①
(2)证明:$\because$四边形$ABCD$为平行四边形,$\therefore AB// DC$,$AB = DC$.$\therefore\angle A+\angle D = 180^{\circ}$.在$\triangle ABM$和$DCM$中,$\begin{cases}AB = DC,\\\angle1=\angle2,\\BM = CM,\end{cases}$ $\therefore\triangle ABM\cong DCM(SAS)$.$\therefore\angle A=\angle D = 90^{\circ}$.$\therefore\square ABCD$为矩形.
11. 如图,在△ABC中,D是边BC的中点,E,F分别在AD及其延长线上,CE//BF,连接BE,CF.
(1)求证:△BDF≌△CDE;
(2)若DE = $\frac{1}{2}$BC,试判断四边形BFCE的形状,并证明你的结论.

(1)求证:△BDF≌△CDE;
(2)若DE = $\frac{1}{2}$BC,试判断四边形BFCE的形状,并证明你的结论.
答案:
(1)证明:$\because CE// BF$,$\therefore\angle BFD=\angle CED$.$\because D$是边$BC$的中点,$\therefore BD = CD$.$\because\angle BDF=\angle CDE$,$\therefore\triangle BDF\cong\triangle CDE(AAS)$.
(2)解:四边形$BFCE$是矩形.证明如下:由
(1)知$\triangle BDF\cong\triangle CDE$,$\therefore DF = DE=\frac{1}{2}EF$.又$\because BD = CD$,$\therefore$四边形$BFCE$是平行四边形.$\because DE=\frac{1}{2}BC$,$\therefore EF = BC$.$\therefore$四边形$BFCE$是矩形.
(1)证明:$\because CE// BF$,$\therefore\angle BFD=\angle CED$.$\because D$是边$BC$的中点,$\therefore BD = CD$.$\because\angle BDF=\angle CDE$,$\therefore\triangle BDF\cong\triangle CDE(AAS)$.
(2)解:四边形$BFCE$是矩形.证明如下:由
(1)知$\triangle BDF\cong\triangle CDE$,$\therefore DF = DE=\frac{1}{2}EF$.又$\because BD = CD$,$\therefore$四边形$BFCE$是平行四边形.$\because DE=\frac{1}{2}BC$,$\therefore EF = BC$.$\therefore$四边形$BFCE$是矩形.
12.(2022·六盘水中考)如图,在□ABCD中,AE平分∠BAC,CF平分∠ACD.
(1)求证:△ABE≌△CDF;
(2)当△ABC满足什么条件时,四边形AECF是矩形?请写出证明过程.

(1)求证:△ABE≌△CDF;
(2)当△ABC满足什么条件时,四边形AECF是矩形?请写出证明过程.
答案:
(1)证明:$\because$四边形$ABCD$是平行四边形,$\therefore AB = CD$,$\angle B=\angle D$,$AB// CD$.$\therefore\angle BAC=\angle ACD$.$\because AE$平分$\angle BAC$,$CF$平分$\angle ACD$,$\therefore\angle BAE=\angle CAE=\frac{1}{2}\angle BAC$,$\angle DCF=\angle ACF=\frac{1}{2}\angle ACD$.$\therefore\angle BAE=\angle DCF$.在$\triangle ABE$和$\triangle CDF$中,$\begin{cases}\angle B=\angle D,\\AB = CD,\\\angle BAE=\angle DCF,\end{cases}$ $\therefore\triangle ABE\cong\triangle CDF(ASA)$.
(2)解:当$\triangle ABC$满足$AB = AC$时,四边形$AECF$是矩形.证明如下:由
(1)可知$\angle CAE=\angle ACF$,$\therefore AE// CF$.$\because\triangle ABE\cong\triangle CDF$,$\therefore AE = CF$.$\therefore$四边形$AECF$是平行四边形.$\because AB = AC$,$AE$平分$\angle BAC$,$\therefore AE\perp BC$.$\therefore\angle AEC = 90^{\circ}$.$\therefore$四边形$AECF$是矩形.
(1)证明:$\because$四边形$ABCD$是平行四边形,$\therefore AB = CD$,$\angle B=\angle D$,$AB// CD$.$\therefore\angle BAC=\angle ACD$.$\because AE$平分$\angle BAC$,$CF$平分$\angle ACD$,$\therefore\angle BAE=\angle CAE=\frac{1}{2}\angle BAC$,$\angle DCF=\angle ACF=\frac{1}{2}\angle ACD$.$\therefore\angle BAE=\angle DCF$.在$\triangle ABE$和$\triangle CDF$中,$\begin{cases}\angle B=\angle D,\\AB = CD,\\\angle BAE=\angle DCF,\end{cases}$ $\therefore\triangle ABE\cong\triangle CDF(ASA)$.
(2)解:当$\triangle ABC$满足$AB = AC$时,四边形$AECF$是矩形.证明如下:由
(1)可知$\angle CAE=\angle ACF$,$\therefore AE// CF$.$\because\triangle ABE\cong\triangle CDF$,$\therefore AE = CF$.$\therefore$四边形$AECF$是平行四边形.$\because AB = AC$,$AE$平分$\angle BAC$,$\therefore AE\perp BC$.$\therefore\angle AEC = 90^{\circ}$.$\therefore$四边形$AECF$是矩形.
查看更多完整答案,请扫码查看