2025年通城学典活页检测七年级数学下册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年通城学典活页检测七年级数学下册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第10页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
7. ★将积的乘方的性质反过来,可以得到$a^{n}\cdot b^{n}=$________,试利用这个性质计算:
(1) $(\frac{4}{7})^{4}\times(-1\frac{3}{4})^{4}$;
(2) $-0.5^{2034}\times(-\frac{4}{3})^{2035}\times(\frac{3}{2})^{2035}$.
(1) $(\frac{4}{7})^{4}\times(-1\frac{3}{4})^{4}$;
(2) $-0.5^{2034}\times(-\frac{4}{3})^{2035}\times(\frac{3}{2})^{2035}$.
答案:
$(ab)^n$ (1)$(\frac{4}{7})^4\times(-1\frac{3}{4})^4=(\frac{4}{7})^4\times(-\frac{7}{4})^4=(\frac{4}{7}\times\frac{7}{4})^4=1^4 = 1$ (2)$-0.5^{2023}\times(-\frac{4}{3})^{2023}\times(\frac{3}{2})^{2023}=(\frac{1}{2}\times\frac{4}{3}\times\frac{3}{2})^{2023}=1^{2023}=1$
8. 若$2\times8^{x}\times16^{x}=2^{22}$,则$x$的值为________.
答案:
3 解析:因为$2\times8^{x}\times16^{x}=2\times(2^{3})^{x}\times(2^{4})^{x}=2\times2^{3x}\times2^{4x}=2^{1 + 3x + 4x}=2^{7x + 1}=2^{22}$,所以$7x + 1 = 22$,所以$x = 3$。
9. ★若$2a - 3b + c - 2 = 0$,求$16^{a}\div8^{2b}\times4^{c}$的值.
答案:
因为$2a - 3b + c - 2 = 0$,所以$2a - 3b + c = 2$。所以$16^{a}\div8^{b}\times4^{c}=(4^{2})^{a}\div(2^{3})^{b}\times4^{c}=4^{2a}\div4^{\frac{3b}{2}}\times4^{c}=4^{2a - \frac{3b}{2} + c}=4^{2}=16$
10. 已知$a = 2^{12}$,$b = 3^{8}$,$c = 5^{4}$,则$a$,$b$,$c$的大小关系是________(用“<”连接).
答案:
$c < a < b$ 解析:因为$a = 2^{12}=(2^{3})^{4}=8^{4}$,$b = 3^{8}=(3^{2})^{4}=9^{4}$,$c = 5^{4}$,而$5^{4}<8^{4}<9^{4}$,所以$c < a < b$。
11. ★★阅读下面比较$2^{100}$与$3^{75}$大小的解题过程:
解:因为$2^{100}=(2^{4})^{25}=16^{25}$,$3^{75}=(3^{3})^{25}=27^{25}$,$16<27$,所以$16^{25}<27^{25}$,即$2^{100}<3^{75}$.
请根据上面的解题过程,解答下面的问题:
(1) 已知$a = 3^{55}$,$b = 4^{44}$,$c = 5^{33}$,比较$a$,$b$,$c$的大小;
(2) 比较$17^{14}$与$31^{11}$的大小.
解:因为$2^{100}=(2^{4})^{25}=16^{25}$,$3^{75}=(3^{3})^{25}=27^{25}$,$16<27$,所以$16^{25}<27^{25}$,即$2^{100}<3^{75}$.
请根据上面的解题过程,解答下面的问题:
(1) 已知$a = 3^{55}$,$b = 4^{44}$,$c = 5^{33}$,比较$a$,$b$,$c$的大小;
(2) 比较$17^{14}$与$31^{11}$的大小.
答案:
(1)因为$a = 3^{55}=(3^{5})^{11}=243^{11}$,$b = 4^{44}=(4^{4})^{11}=256^{11}$,$c = 5^{33}=(5^{3})^{11}=125^{11}$,$256 > 243 > 125$,所以$256^{11}>243^{11}>125^{11}$,所以$b > a > c$ (2)因为$17^{14}>16^{14}$,$16^{14}=(2^{4})^{14}=2^{56}$,所以$17^{14}>2^{56}$。因为$2^{55}=(2^{5})^{11}=32^{11}$,$32 > 31$,所以$2^{55}>31^{11}$,所以$17^{14}>31^{11}$
查看更多完整答案,请扫码查看