2025年名校课堂九年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂九年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂九年级数学上册北师大版》

1. 一元二次方程$x^{2}-4= 0$的根是 (
B
)
A. $x_{1}= x_{2}= 2$
B. $x_{1}= 2,x_{2}= -2$
C. $x_{1}= x_{2}= 4$
D. $x_{1}= 4,x_{2}= -4$
答案: B
2. 解下列方程,能用直接开平方法的是 (
D
)
A. $x^{2}-x= 0$
B. $x^{2}+2= 0$
C. $x^{2}+x= 1$
D. $x^{2}-3= 6$
答案: D
3. 解方程:$(x-1)^{2}= 9$.
解:两边开平方,得$x-1=$
$\pm 3$
,
$x - 1 = 3$
$x - 1 = - 3$
.
所以$x_{1}=$
4
,$x_{2}=$
$- 2$
.
答案: $\pm 3$ $x - 1 = 3$ $x - 1 = - 3$ 4 $- 2$
4. 用直接开平方法解下列方程:
(1)$\frac {1}{2}x^{2}= 8$.
解: $x^{2} =$
16
,$\therefore x_{1} =$
4
,$x_{2} =$
-4

(2)$(2x-1)^{2}= 49$.
解: $2x - 1 =$
±7
,$\therefore 2x - 1 =$
7
或$2x - 1 =$
-7
。$\therefore x_{1} =$
4
,$x_{2} =$
-3

(3)$4(x+1)^{2}-25= 0$.
解: $4(x + 1)^{2} =$
25
,$(x + 1)^{2} =$
$\frac{25}{4}$
,$\therefore x + 1 =$
±$\frac{5}{2}$
。$\therefore x + 1 =$
$\frac{5}{2}$
或$x + 1 =$
-$\frac{5}{2}$
。$\therefore x_{1} =$
$\frac{3}{2}$
,$x_{2} =$
-$\frac{7}{2}$
答案: 解:
(1) $x^{2} = 16$,$\therefore x_{1} = 4$,$x_{2} = - 4$。
(2) $2x - 1 = \pm 7$,$\therefore 2x - 1 = 7$或$2x - 1 = - 7$。$\therefore x_{1} = 4$,$x_{2} = - 3$。
(3) $4(x + 1)^{2} = 25$,$(x + 1)^{2} = \frac{25}{4}$,$\therefore x + 1 = \pm \frac{5}{2}$。$\therefore x + 1 = \frac{5}{2}$或$x + 1 = - \frac{5}{2}$。$\therefore x_{1} = \frac{3}{2}$,$x_{2} = - \frac{7}{2}$。
5. (教材P36“做一做”变式)填空:
(1)$x^{2}+4x+$
4
$=(x+$
2
$)^{2}$.
(2)$x^{2}-12x+$
36
$=(x-$
6
$)^{2}$.
(3)$x^{2}+5x+$
$\frac{25}{4}$
$=(x+$
$\frac{5}{2}$
$)^{2}$.
(4)$x^{2}-\frac {2}{5}x+$
$\frac{1}{25}$
$=(x-$
$\frac{1}{5}$
$)^{2}$.
答案:
(1) 4 2
(2) 36 6
(3) $\frac{25}{4}$ $\frac{5}{2}$
(4) $\frac{1}{25}$ $\frac{1}{5}$
6. (2024·德州)把多项式$x^{2}-3x+4$进行配方,结果为 (
B
)
A. $(x-3)^{2}-5$
B. $(x-\frac {3}{2})^{2}+\frac {7}{4}$
C. $(x-\frac {3}{2})^{2}+\frac {25}{4}$
D. $(x+\frac {3}{2})^{2}+\frac {7}{4}$
答案: B
7. 用配方法解一元二次方程$x^{2}-6x+6= 0$时可配方得 (
A
)
A. $(x-3)^{2}= 3$
B. $(x+3)^{2}= 3$
C. $(x+3)^{2}= 6$
D. $(x-3)^{2}= 6$
答案: A
8. 用配方法解方程:
(1)$x^{2}+8x+1= 0$.
解: $x^{2} + 8x = - 1$,$x^{2} + 8x + 4^{2} = - 1 + 4^{2}$,$(x + 4)^{2} = 15$,$\therefore x + 4 = \pm \sqrt{15}$。$\therefore x_{1} =
- 4 + \sqrt{15}
$,$x_{2} =
- 4 - \sqrt{15}
$。
(2)$x^{2}-x-\frac {1}{4}= 0$.
解: $x^{2} - x = \frac{1}{4}$,$x^{2} - x + (\frac{1}{2})^{2} = \frac{1}{4} + (\frac{1}{2})^{2}$,$(x - \frac{1}{2})^{2} = \frac{1}{2}$,$\therefore x - \frac{1}{2} = \pm \frac{\sqrt{2}}{2}$。$\therefore x_{1} =
\frac{1 + \sqrt{2}}{2}
$,$x_{2} =
\frac{1 - \sqrt{2}}{2}
$。
(3)$x^{2}+6= 10x-2$.
解: $x^{2} - 10x = - 8$,$x^{2} - 10x + 5^{2} = - 8 + 5^{2}$,$(x - 5)^{2} = 17$,$\therefore x - 5 = \pm \sqrt{17}$。$\therefore x_{1} =
5 + \sqrt{17}
$,$x_{2} =
5 - \sqrt{17}
$。
答案: 解:
(1) $x^{2} + 8x = - 1$,$x^{2} + 8x + 4^{2} = - 1 + 4^{2}$,$(x + 4)^{2} = 15$,$\therefore x + 4 = \pm \sqrt{15}$。$\therefore x_{1} = - 4 + \sqrt{15}$,$x_{2} = - 4 - \sqrt{15}$。
(2) $x^{2} - x = \frac{1}{4}$,$x^{2} - x + (\frac{1}{2})^{2} = \frac{1}{4} + (\frac{1}{2})^{2}$,$(x - \frac{1}{2})^{2} = \frac{1}{2}$,$\therefore x - \frac{1}{2} = \pm \frac{\sqrt{2}}{2}$。$\therefore x_{1} = \frac{1 + \sqrt{2}}{2}$,$x_{2} = \frac{1 - \sqrt{2}}{2}$。
(3) $x^{2} - 10x = - 8$,$x^{2} - 10x + 5^{2} = - 8 + 5^{2}$,$(x - 5)^{2} = 17$,$\therefore x - 5 = \pm \sqrt{17}$。$\therefore x_{1} = 5 + \sqrt{17}$,$x_{2} = 5 - \sqrt{17}$。

查看更多完整答案,请扫码查看

关闭