2025年名校课堂九年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂九年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂九年级数学上册北师大版》

11. 如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且$DE= BF$,连接AE,AF,EF.若$BC= 8$,$DE= 3$,则EF的长为
$\sqrt {146}$
.
答案: $\sqrt {146}$
12. 如图,在正方形ABCD中,AC与BD交于点O,BE平分$∠CBD$,交CD于点E,交OC于点F.若$AB= 4$,则$CF= $
$4\sqrt {2}-4$
.
答案: $4\sqrt {2}-4$
13. 如图,在一个边长为6的正方形ABCD中,E为AD的中点,P为对角线BD上的一个动点,则$AP+EP$的最小值是
$3\sqrt {5}$
.
答案: $3\sqrt {5}$
14. 如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,且$AE= CF$,连接DE,DF,BE,BF.
(1)求证:$△ADE≌△CBF$.
证明:$\because$四边形$ABCD$是正方形,$\therefore \angle DAE=\angle BCF = 45^{\circ}$,$AD = CB$.在$\triangle ADE$和$\triangle CBF$中,$\left\{\begin{array}{l} AD = CB,\\ \angle DAE = \angle BCF,\\ AE = CF,\end{array}\right.$$\therefore \triangle ADE≌\triangle CBF$(
SAS
).
(2)若$AB= 4\sqrt{2}$,$AE= 2$,求四边形BEDF的周长.
解:$\because AB = AD = 4\sqrt {2}$,$\therefore BD =\sqrt {AB^{2}+AD^{2}}=\sqrt {(4\sqrt {2})^{2}+(4\sqrt {2})^{2}} = 8$.$\because$四边形$ABCD$是正方形,$\therefore AC = BD = 8$,$BD\perp EF$.$\therefore DO = BO = OA = OC = 4$.又$\because AE = CF = 2$,$\therefore OE = OA - AE = 4 - 2 = 2$,$OF = OC - CF$,即$OE = OF = 4 - 2 = 2$.$\therefore$四边形$BEDF$为菱形.$\because DE=\sqrt {DO^{2}+EO^{2}}=\sqrt {4^{2}+2^{2}} = 2\sqrt {5}$,$\therefore$四边形$BEDF$的周长为
$8\sqrt{5}$
答案: 解:
(1)证明:$\because$四边形$ABCD$是正方形,$\therefore \angle DAE=\angle BCF = 45^{\circ}$,$AD = CB$.在$\triangle ADE$和$\triangle CBF$中,$\left\{\begin{array}{l} AD = CB,\\ \angle DAE = \angle BCF,\\ AE = CF,\end{array}\right.$$\therefore \triangle ADE\cong \triangle CBF(SAS)$.
(2)$\because AB = AD = 4\sqrt {2}$,$\therefore BD =\sqrt {AB^{2}+AD^{2}}=\sqrt {(4\sqrt {2})^{2}+(4\sqrt {2})^{2}} = 8$.$\because$四边形$ABCD$是正方形,$\therefore AC = BD = 8$,$BD\perp EF$.$\therefore DO = BO = OA = OC = 4$.又$\because AE = CF = 2$,$\therefore OE = OA - AE = 4 - 2 = 2$,$OF = OC - CF$,即$OE = OF = 4 - 2 = 2$.$\therefore$四边形$BEDF$为菱形.$\because DE=\sqrt {DO^{2}+EO^{2}}=\sqrt {4^{2}+2^{2}} = 2\sqrt {5}$,$\therefore$四边形$BEDF$的周长为$4DE = 8\sqrt {5}$.
15. 如图1,在正方形ABCD中,P为对角线BD上的一点,点E在AD的延长线上,且$PA= PE$,$PE$交CD于点F,连接CE.
(1)求证:$△PCE$是等腰直角三角形.
(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当$∠ABC= 120^{\circ}$时,判断$△PCE$的形状,并说明理由.

(1)证明:$\because$四边形$ABCD$是正方形,$\therefore DA = DC$,$\angle ADP=\angle CDP = 45^{\circ}$,$\angle ADC = 90^{\circ}$.在$\triangle PDA$和$\triangle PDC$中,$\left\{\begin{array}{l} PD = PD,\\ \angle ADP = \angle CDP,\\ DA = DC,\end{array}\right.$$\therefore \triangle PDA\cong \triangle PDC(SAS)$.$\therefore PA = PC$,$\angle PAD = \angle PCD$.$\because PA = PE$,$\therefore PE = PC$,$\angle PEA = \angle PAD$.$\therefore \angle PCD = \angle PEA$.$\because \angle EDF = 90^{\circ}$,$\angle DFE = \angle PFC$,$\therefore \angle FPC = \angle EDF = 90^{\circ}$.$\therefore \triangle PCE$是等腰直角三角形.
(2)
$\triangle PCE$是等边三角形
.理由:$\because$四边形$ABCD$是菱形,$\therefore DA = DC$,$\angle ADP = \angle CDP$,$\angle ADC = \angle ABC = 120^{\circ}$.在$\triangle PDA$和$\triangle PDC$中,$\left\{\begin{array}{l} PD = PD,\\ \angle ADP = \angle CDP,\\ DA = DC,\end{array}\right.$$\therefore \triangle PDA\cong \triangle PDC(SAS)$.$\therefore PA = PC$,$\angle PAD = \angle PCD$.$\because PA = PE$,$\therefore \angle PEA = \angle PAD$,$PE = PC$.$\therefore \angle PCD = \angle PEA$.$\because \angle DFE = \angle PFC$,$\therefore \angle EPC = \angle EDC$.$\because \angle ADC = 120^{\circ}$,$\therefore \angle EDC = 60^{\circ}$.$\therefore \angle EPC = 60^{\circ}$.$\therefore \triangle PCE$是等边三角形.
答案: 解:
(1)证明:$\because$四边形$ABCD$是正方形,$\therefore DA = DC$,$\angle ADP=\angle CDP = 45^{\circ}$,$\angle ADC = 90^{\circ}$.在$\triangle PDA$和$\triangle PDC$中,$\left\{\begin{array}{l} PD = PD,\\ \angle ADP = \angle CDP,\\ DA = DC,\end{array}\right.$$\therefore \triangle PDA\cong \triangle PDC(SAS)$.$\therefore PA = PC$,$\angle PAD = \angle PCD$.$\because PA = PE$,$\therefore PE = PC$,$\angle PEA = \angle PAD$.$\therefore \angle PCD = \angle PEA$.$\because \angle EDF = 90^{\circ}$,$\angle DFE = \angle PFC$,$\therefore \angle FPC = \angle EDF = 90^{\circ}$.$\therefore \triangle PCE$是等腰直角三角形.
(2)$\triangle PCE$是等边三角形.理由:$\because$四边形$ABCD$是菱形,$\therefore DA = DC$,$\angle ADP = \angle CDP$,$\angle ADC = \angle ABC = 120^{\circ}$.在$\triangle PDA$和$\triangle PDC$中,$\left\{\begin{array}{l} PD = PD,\\ \angle ADP = \angle CDP,\\ DA = DC,\end{array}\right.$$\therefore \triangle PDA\cong \triangle PDC(SAS)$.$\therefore PA = PC$,$\angle PAD = \angle PCD$.$\because PA = PE$,$\therefore \angle PEA = \angle PAD$,$PE = PC$.$\therefore \angle PCD = \angle PEA$.$\because \angle DFE = \angle PFC$,$\therefore \angle EPC = \angle EDC$.$\because \angle ADC = 120^{\circ}$,$\therefore \angle EDC = 60^{\circ}$.$\therefore \angle EPC = 60^{\circ}$.$\therefore \triangle PCE$是等边三角形.

查看更多完整答案,请扫码查看

关闭