2025年名校课堂九年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂九年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂九年级数学上册北师大版》

1. 下列用配方法解方程$2x^{2}+4x-1= 0$的四个步骤中,开始出现错误的步骤是(
B
)

A. ①
B. ②
C. ③
D. ④
答案: B
2. 用配方法解方程$3x^{2}+2x-1= 0$,配方后的方程是(
D
)
A. $3(x-1)^{2}= 0$
B. $(x+\frac {2}{3})^{2}= \frac {1}{3}$
C. $(x+\frac {1}{3})^{2}= \frac {1}{3}$
D. $(x+\frac {1}{3})^{2}= \frac {4}{9}$
答案: D
3. 用配方法解方程:$2x^{2}-3x-2= 0$.
解:两边同除以2,得$x^{2}-$
$\frac{3}{2}x$
$-1= 0$.
配方,得$x^{2}-\frac {3}{2}x+$
$(\frac{3}{4})^{2}$
$-$
$(\frac{3}{4})^{2}$
$-1= 0$.
移项,得$(x-$
$\frac{3}{4}$
$)^{2}=$
$\frac{25}{16}$

两边开平方,得$x-$
$\frac{3}{4}$
$=$
$\pm\frac{5}{4}$

所以$x_{1}=$
2
,$x_{2}=$
$-\frac{1}{2}$
答案: $\frac{3}{2}x$ $(\frac{3}{4})^{2}$ $(\frac{3}{4})^{2}$ $\frac{3}{4}$ $\frac{25}{16}$ $\frac{3}{4}$ $\pm\frac{5}{4}$ 2 $-\frac{1}{2}$
4. 若代数式$\frac {1}{2}x^{2}-6x$的值为7,则x的值为
$6 + 5\sqrt{2}$或$6 - 5\sqrt{2}$
答案: $6 + 5\sqrt{2}$或$6 - 5\sqrt{2}$
5. 解方程:
(1)$4x^{2}+8x= 1$.
解:
$x^{2} + 2x = \frac{1}{4}$,$x^{2} + 2x + 1 = \frac{1}{4} + 1$,即$(x + 1)^{2} = \frac{5}{4}$,$\therefore x + 1 = \pm\frac{\sqrt{5}}{2}$。$\therefore x_{1} = -1 + \frac{\sqrt{5}}{2}$,$x_{2} = -1 - \frac{\sqrt{5}}{2}$

(2)$4x^{2}+4x-3= 0$.
解:
$x^{2} + x = \frac{3}{4}$,$x^{2} + x + (\frac{1}{2})^{2} = \frac{3}{4} + (\frac{1}{2})^{2}$,即$(x + \frac{1}{2})^{2} = 1$,$\therefore x + \frac{1}{2} = \pm1$。$\therefore x_{1} = \frac{1}{2}$,$x_{2} = -\frac{3}{2}$

(3)$2x^{2}-1= -\frac {1}{2}x$.
解:
$x^{2} + \frac{1}{4}x = \frac{1}{2}$,$x^{2} + \frac{1}{4}x + (\frac{1}{8})^{2} = \frac{1}{2} + (\frac{1}{8})^{2}$,即$(x + \frac{1}{8})^{2} = \frac{33}{64}$,$\therefore x + \frac{1}{8} = \pm\frac{\sqrt{33}}{8}$。$\therefore x_{1} = \frac{-1 + \sqrt{33}}{8}$,$x_{2} = \frac{-1 - \sqrt{33}}{8}$

(4)$-3x^{2}+4x+1= 0$.
解:
$x^{2} - \frac{4}{3}x = \frac{1}{3}$,$x^{2} - \frac{4}{3}x + (\frac{2}{3})^{2} = \frac{1}{3} + (\frac{2}{3})^{2}$,即$(x - \frac{2}{3})^{2} = \frac{7}{9}$,$\therefore x - \frac{2}{3} = \pm\frac{\sqrt{7}}{3}$。$\therefore x_{1} = \frac{2 + \sqrt{7}}{3}$,$x_{2} = \frac{2 - \sqrt{7}}{3}$
答案: 解:
(1)$x^{2} + 2x = \frac{1}{4}$,$x^{2} + 2x + 1 = \frac{1}{4} + 1$,即$(x + 1)^{2} = \frac{5}{4}$,$\therefore x + 1 = \pm\frac{\sqrt{5}}{2}$。$\therefore x_{1} = -1 + \frac{\sqrt{5}}{2}$,$x_{2} = -1 - \frac{\sqrt{5}}{2}$。
(2)$x^{2} + x = \frac{3}{4}$,$x^{2} + x + (\frac{1}{2})^{2} = \frac{3}{4} + (\frac{1}{2})^{2}$,即$(x + \frac{1}{2})^{2} = 1$,$\therefore x + \frac{1}{2} = \pm1$。$\therefore x_{1} = \frac{1}{2}$,$x_{2} = -\frac{3}{2}$。
(3)$x^{2} + \frac{1}{4}x = \frac{1}{2}$,$x^{2} + \frac{1}{4}x + (\frac{1}{8})^{2} = \frac{1}{2} + (\frac{1}{8})^{2}$,即$(x + \frac{1}{8})^{2} = \frac{33}{64}$,$\therefore x + \frac{1}{8} = \pm\frac{\sqrt{33}}{8}$。$\therefore x_{1} = \frac{-1 + \sqrt{33}}{8}$,$x_{2} = \frac{-1 - \sqrt{33}}{8}$。
(4)$x^{2} - \frac{4}{3}x = \frac{1}{3}$,$x^{2} - \frac{4}{3}x + (\frac{2}{3})^{2} = \frac{1}{3} + (\frac{2}{3})^{2}$,即$(x - \frac{2}{3})^{2} = \frac{7}{9}$,$\therefore x - \frac{2}{3} = \pm\frac{\sqrt{7}}{3}$。$\therefore x_{1} = \frac{2 + \sqrt{7}}{3}$,$x_{2} = \frac{2 - \sqrt{7}}{3}$。
6. 如果一个一元二次方程的二次项是$2x^{2}$,配方后整理得$(x-\frac {1}{2})^{2}= 1$,那么它的一次项和常数项分别是(
C
)
A. $-x,-\frac {3}{4}$
B. $-2x,-\frac {1}{2}$
C. $-2x,-\frac {3}{2}$
D. $x,-\frac {3}{2}$
答案: C

查看更多完整答案,请扫码查看

关闭