2025年名校课堂九年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂九年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂九年级数学上册北师大版》

1. 如图,在$△ABC$中,$∠ACB= 90^{\circ }$,CD是斜边AB上的高,$AD= 9,BD= 4$,那么$CD= $
6
,$AC= $
$3\sqrt{13}$
.
答案: 6 3 $\sqrt{13}$
2. 如图,点$P_{1},P_{2},P_{3},P_{4}$均在坐标轴上,且$P_{1}P_{2}⊥P_{2}P_{3},P_{2}P_{3}⊥P_{3}P_{4}$.若点$P_{1},P_{2}的坐标分别为(0,-1),(-2,0)$,则点$P_{4}$的坐标为
$(8,0)$
.
答案: $(8,0)$
3. 如图,已知$∠DAB= ∠EAC,∠ADE= ∠ABC$.求证:
(1)$△ADE\backsim △ABC$.
证明:
$\because ∠DAB = ∠EAC, \therefore ∠DAE = ∠BAC$. 又 $\because ∠ADE = ∠ABC, \therefore △ADE \backsim △ABC$
.
(2)$\frac {AD}{AE}= \frac {BD}{CE}$.
证明:
$\because △ADE \backsim △ABC, \therefore \frac{AD}{AE} = \frac{AB}{AC}$. $\because ∠DAB = ∠EAC, \therefore △ADB \backsim △AEC$. $\therefore \frac{AD}{AE} = \frac{BD}{CE}$
.
答案: 证明:
(1) $\because ∠DAB = ∠EAC, \therefore ∠DAE = ∠BAC$. 又 $\because ∠ADE = ∠ABC, \therefore △ADE \backsim △ABC$.
(2) $\because △ADE \backsim △ABC, \therefore \frac{AD}{AE} = \frac{AB}{AC}$. $\because ∠DAB = ∠EAC, \therefore △ADB \backsim △AEC$. $\therefore \frac{AD}{AE} = \frac{BD}{CE}$.
4. (2023·常德)如图1,在$Rt△ABC$中,$∠ABC= 90^{\circ },AB= 8,BC= 6$,D是AB上一点,且$AD= 2$,过点D作$DE// BC$交AC于点E,将$△ADE$绕点A顺时针旋转到图2的位置,则图2中$\frac {BD}{CE}$的值为____
$\frac{4}{5}$
.

答案: $\frac{4}{5}$
5. 如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,$AF⊥EG$.若$AB= 5,AE= DG= 1$,则$BF= $
$\frac{5}{4}$
.
答案: $\frac{5}{4}$

查看更多完整答案,请扫码查看

关闭