2025年名校课堂九年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂九年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂九年级数学上册北师大版》

1. 解下列方程:
(1)$(2x+1)^{2}= 9$.
解:
$2x + 1 = \pm 3$.$\therefore 2x + 1 = 3$或$2x + 1 = - 3$.$\therefore x_{1} = 1$,$x_{2} = - 2$
.
(2)$3(x+1)^{2}-108= 0$.
解:
$3(x + 1)^{2} = 108$,$(x + 1)^{2} = 36$.$\therefore x + 1 = \pm 6$.$\therefore x_{1} = 5$,$x_{2} = - 7$
.
(3)$x^{2}-4x+4= 5$.
解:
$(x - 2)^{2} = 5$.$\therefore x - 2 = \pm \sqrt{5}$.$\therefore x_{1} = 2 + \sqrt{5}$,$x_{2} = 2 - \sqrt{5}$
.
答案: 解:
(1)$2x + 1 = \pm 3$.$\therefore 2x + 1 = 3$或$2x + 1 = - 3$.$\therefore x_{1} = 1$,$x_{2} = - 2$.
(2)$3(x + 1)^{2} = 108$,$(x + 1)^{2} = 36$.$\therefore x + 1 = \pm 6$.$\therefore x_{1} = 5$,$x_{2} = - 7$.
(3)$(x - 2)^{2} = 5$.$\therefore x - 2 = \pm \sqrt{5}$.$\therefore x_{1} = 2 + \sqrt{5}$,$x_{2} = 2 - \sqrt{5}$.
2. 解下列方程:
(1)$x^{2}-2x-99= 0$.
$x^{2} - 2x = 99$,$x^{2} - 2x + 1 = 99 + 1$,即$(x - 1)^{2} = 100$.$\therefore x - 1 = \pm 10$.$\therefore x_{1} = 11$,$x_{2} = - 9$.

(2)$3x^{2}-6x+2= 0$.
$x^{2} - 2x = - \frac{2}{3}$,$x^{2} - 2x + 1 = - \frac{2}{3} + 1$,即$(x - 1)^{2} = \frac{1}{3}$.$\therefore x - 1 = \pm \frac{\sqrt{3}}{3}$.$\therefore x_{1} = 1 + \frac{\sqrt{3}}{3}$,$x_{2} = 1 - \frac{\sqrt{3}}{3}$.
答案: 解:
(1)$x^{2} - 2x = 99$,$x^{2} - 2x + 1 = 99 + 1$,即$(x - 1)^{2} = 100$.$\therefore x - 1 = \pm 10$.$\therefore x_{1} = 11$,$x_{2} = - 9$.
(2)$x^{2} - 2x = - \frac{2}{3}$,$x^{2} - 2x + 1 = - \frac{2}{3} + 1$,即$(x - 1)^{2} = \frac{1}{3}$.$\therefore x - 1 = \pm \frac{\sqrt{3}}{3}$.$\therefore x_{1} = 1 + \frac{\sqrt{3}}{3}$,$x_{2} = 1 - \frac{\sqrt{3}}{3}$.
3. 解下列方程:
(1)$x(x-2)+x-2= 0$.
解:
$(x - 2)(x + 1) = 0$,$\therefore x + 1 = 0$或$x - 2 = 0$.$\therefore x_{1} = - 1$,$x_{2} = 2$
.
(2)$9x^{2}-(x-1)^{2}= 0$.
解:
$(3x + x - 1)(3x - x + 1) = 0$,$(4x - 1)(2x + 1) = 0$,$\therefore 4x - 1 = 0$或$2x + 1 = 0$.$\therefore x_{1} = \frac{1}{4}$,$x_{2} = - \frac{1}{2}$
.
答案: 解:
(1)$(x - 2)(x + 1) = 0$,$\therefore x + 1 = 0$或$x - 2 = 0$.$\therefore x_{1} = - 1$,$x_{2} = 2$.
(2)$(3x + x - 1)(3x - x + 1) = 0$,$(4x - 1)(2x + 1) = 0$,$\therefore 4x - 1 = 0$或$2x + 1 = 0$.$\therefore x_{1} = \frac{1}{4}$,$x_{2} = - \frac{1}{2}$.
4. 解下列方程:
(1)$2x^{2}+2x-1= 0$.
解: $\because a = 2$,$b = 2$,$c = - 1$,$\therefore \Delta = b^{2} - 4ac = 2^{2} - 4 × 2 × (- 1) = 12 > 0$.$\therefore x = \frac{- 2 \pm \sqrt{12}}{2 × 2} = \frac{- 2 \pm 2\sqrt{3}}{4} = \frac{- 1 \pm \sqrt{3}}{2}$.$\therefore x_{1} =$
$\frac{- 1 + \sqrt{3}}{2}$
,$x_{2} =$
$\frac{- 1 - \sqrt{3}}{2}$
.
(2)$3x^{2}-2x-8= 0$.
解: $\because a = 3$,$b = - 2$,$c = - 8$,$\therefore \Delta = b^{2} - 4ac = (- 2)^{2} - 4 × 3 × (- 8) = 100 > 0$.$\therefore x = \frac{2 \pm \sqrt{100}}{2 × 3} = \frac{2 \pm 10}{6}$.$\therefore x_{1} =$
$2$
,$x_{2} =$
$-\frac{4}{3}$
.
答案: 解:
(1)$\because a = 2$,$b = 2$,$c = - 1$,$\therefore \Delta = b^{2} - 4ac = 2^{2} - 4 \times 2 \times (- 1) = 12 > 0$.$\therefore x = \frac{- 2 \pm \sqrt{12}}{2 \times 2} = \frac{- 2 \pm 2\sqrt{3}}{4} = \frac{- 1 \pm \sqrt{3}}{2}$.$\therefore x_{1} = \frac{- 1 + \sqrt{3}}{2}$,$x_{2} = \frac{- 1 - \sqrt{3}}{2}$.
(2)$\because a = 3$,$b = - 2$,$c = - 8$,$\therefore \Delta = b^{2} - 4ac = (- 2)^{2} - 4 \times 3 \times (- 8) = 100 > 0$.$\therefore x = \frac{2 \pm \sqrt{100}}{2 \times 3} = \frac{2 \pm 10}{6}$.$\therefore x_{1} = 2$,$x_{2} = - \frac{4}{3}$.

查看更多完整答案,请扫码查看

关闭