第61页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
1. (教材P80随堂练习变式)如果$\frac {a}{b}= \frac {c}{d}= \frac {e}{f}= \frac {1}{3}$($a,b,c,d,e,f$均为正数),那么下列选项中错误的是 (
A. $\frac {a+c}{b+d}= \frac {1}{3}$
B. $\frac {a+e}{b+f}= \frac {1}{3}$
C. $\frac {a+c+e}{b+d+f}= \frac {1}{3}$
D. $\frac {a}{b}= \frac {c+m}{d+m}(m>0)$
D
)A. $\frac {a+c}{b+d}= \frac {1}{3}$
B. $\frac {a+e}{b+f}= \frac {1}{3}$
C. $\frac {a+c+e}{b+d+f}= \frac {1}{3}$
D. $\frac {a}{b}= \frac {c+m}{d+m}(m>0)$
答案:
D
2. 已知$\frac {a}{b}= \frac {c}{d}= \frac {e}{f}= \frac {4}{3}$,若$b+d+f= 9$,则$a+c+e= $
12
.
答案:
12
3. 若$\frac {a}{b}= \frac {2}{3}(b≠-6)$,则$\frac {a+4}{b+6}$的值为
$\frac{2}{3}$
.
答案:
$\frac{2}{3}$
4. (教材P80例2变式)如图,在$\triangle ABC$中,$D,E,F分别为AB$,$BC$,$AC$的中点,连接$DE$,$DF$,$EF$,则$\frac {DE+EF+DF}{AC+AB+BC}$的值为

$\frac{1}{2}$
.
答案:
$\frac{1}{2}$
5. 若$\frac {a-b}{b}= \frac {3}{5}$,则$\frac {a}{b}$的值为 (
A. $\frac {3}{8}$
B. $\frac {3}{5}$
C. $\frac {8}{5}$
D. $\frac {5}{3}$
C
)A. $\frac {3}{8}$
B. $\frac {3}{5}$
C. $\frac {8}{5}$
D. $\frac {5}{3}$
答案:
C
6. (教材P81习题T3变式)若$\frac {y}{x}= 2$,则$\frac {x+y}{x}$的值为
3
.
答案:
3
7. 已知$\frac {a}{b}= \frac {c}{d}= \frac {e}{f}= \frac {3}{4}$,则$\frac {a+c-2e}{b+d-2f}(b+d-2f≠0)$的值为
$\frac{3}{4}$
,$\frac {a-2c+3e}{2b-4d+6f}(2b-4d+6f≠0)$的值为$\frac{3}{8}$
.
答案:
$\frac{3}{4}$ $\frac{3}{8}$
8. 若$\frac {x}{2}= \frac {y}{3}= \frac {z}{4}$,且$x+2y+z= 36$,则$x=$
6
,$y=$9
,$z=$12
.
答案:
6 9 12
9. 已知$a,b,c是\triangle ABC$的三边长,满足$\frac {a+4}{3}= \frac {b+3}{2}= \frac {c+8}{4}$,且$a+b+c= 12$,请探索$\triangle ABC$的形状.
解:由等比性质,得$\frac{a + 4}{3} = \frac{b + 3}{2} = \frac{c + 8}{4} = \frac{a + 4 + b + 3 + c + 8}{3 + 2 + 4}$,$\because$
$a + b + c = 12$,$\therefore \frac{a + 4}{3} = \frac{b + 3}{2} = \frac{c + 8}{4} = \frac{12 + 4 + 3 + 8}{3 + 2 + 4} = 3$.$\therefore a + 4$
$= 9$,$b + 3 = 6$,$c + 8 = 12$.$\therefore a = 5$,$b = 3$,$c = 4$.$\because b^{2} + c^{2} = 3^{2} + 4^{2}$
$= 25 = a^{2}$,$\therefore \triangle ABC$是
解:由等比性质,得$\frac{a + 4}{3} = \frac{b + 3}{2} = \frac{c + 8}{4} = \frac{a + 4 + b + 3 + c + 8}{3 + 2 + 4}$,$\because$
$a + b + c = 12$,$\therefore \frac{a + 4}{3} = \frac{b + 3}{2} = \frac{c + 8}{4} = \frac{12 + 4 + 3 + 8}{3 + 2 + 4} = 3$.$\therefore a + 4$
$= 9$,$b + 3 = 6$,$c + 8 = 12$.$\therefore a = 5$,$b = 3$,$c = 4$.$\because b^{2} + c^{2} = 3^{2} + 4^{2}$
$= 25 = a^{2}$,$\therefore \triangle ABC$是
直角三角形
.
答案:
解:由等比性质,得$\frac{a + 4}{3} = \frac{b + 3}{2} = \frac{c + 8}{4} = \frac{a + 4 + b + 3 + c + 8}{3 + 2 + 4}$,$\because$
$a + b + c = 12$,$\therefore \frac{a + 4}{3} = \frac{b + 3}{2} = \frac{c + 8}{4} = \frac{12 + 4 + 3 + 8}{3 + 2 + 4} = 3$.$\therefore a + 4$
$= 9$,$b + 3 = 6$,$c + 8 = 12$.$\therefore a = 5$,$b = 3$,$c = 4$.$\because b^{2} + c^{2} = 3^{2} + 4^{2}$
$= 25 = a^{2}$,$\therefore \triangle ABC$是直角三角形.
$a + b + c = 12$,$\therefore \frac{a + 4}{3} = \frac{b + 3}{2} = \frac{c + 8}{4} = \frac{12 + 4 + 3 + 8}{3 + 2 + 4} = 3$.$\therefore a + 4$
$= 9$,$b + 3 = 6$,$c + 8 = 12$.$\therefore a = 5$,$b = 3$,$c = 4$.$\because b^{2} + c^{2} = 3^{2} + 4^{2}$
$= 25 = a^{2}$,$\therefore \triangle ABC$是直角三角形.
10. 若$\frac {a+b}{c}= \frac {b+c}{a}= \frac {c+a}{b}= k$,则$k$的值为
2 或 -1
.
答案:
2 或 -1
11. 新考向 推理能力(本课时T10变式)已知$a,b,c$均为非零的实数,且满足$\frac {a+b-c}{c}= \frac {a-b+c}{b}= \frac {-a+b+c}{a}$,求$\frac {(a+b)(b+c)(c+a)}{abc}$的值.
8 或 -1
答案:
解:①当$a + b + c \neq 0$时,由等比性质,得$\frac{a + b - c}{c} = \frac{a - b + c}{b} =$
$\frac{-a + b + c}{a} = \frac{a + b - c + a - b + c - a + b + c}{a + b + c} = 1$,$\therefore a + b - c = c$,$a$
$-b + c = b$,$-a + b + c = a$.$\therefore a + b = 2c$,$a + c = 2b$,$b + c = 2a$.$\therefore$
$\frac{(a + b)(b + c)(c + a)}{abc} = \frac{2c \cdot 2a \cdot 2b}{abc} = 8$. ②当$a + b + c = 0$时,$a$
$+ b = -c$,$b + c = -a$,$c + a = -b$,$\therefore \frac{(a + b)(b + c)(c + a)}{abc} =$
$\frac{(-c)(-a)(-b)}{abc} = -1$. 综上所述,$\frac{(a + b)(b + c)(c + a)}{abc}$的值
为 8 或 -1.
$\frac{-a + b + c}{a} = \frac{a + b - c + a - b + c - a + b + c}{a + b + c} = 1$,$\therefore a + b - c = c$,$a$
$-b + c = b$,$-a + b + c = a$.$\therefore a + b = 2c$,$a + c = 2b$,$b + c = 2a$.$\therefore$
$\frac{(a + b)(b + c)(c + a)}{abc} = \frac{2c \cdot 2a \cdot 2b}{abc} = 8$. ②当$a + b + c = 0$时,$a$
$+ b = -c$,$b + c = -a$,$c + a = -b$,$\therefore \frac{(a + b)(b + c)(c + a)}{abc} =$
$\frac{(-c)(-a)(-b)}{abc} = -1$. 综上所述,$\frac{(a + b)(b + c)(c + a)}{abc}$的值
为 8 或 -1.
查看更多完整答案,请扫码查看