2025年畅行课堂七年级数学下册华师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年畅行课堂七年级数学下册华师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第76页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
11. 如图,在△ABC中,∠B = 65°,∠C = 69°,DE//AC,则∠BDE等于______.

答案:
46°
12. 如图,在△ABC中,BD是边AC上的高,CE平分∠ACB交BD于点E,∠A = 70°,∠ABC = 50°,求∠BEC的度数.

答案:
解:
∵BD⊥AC,∠A = 70°,
∴∠ADB = ∠BDC = 90°,
∴∠ABD = 90° - 70° = 20°.
∵∠ABC = 50°,
∴∠CBD = ∠CBE = ∠ABC - ∠ABD = 50° - 20° = 30°,
∴∠BCD = 90° - ∠CBD = 90° - 30° = 60°.
∵CE平分∠ACB,
∴∠BCE = ∠ACE = $\frac{1}{2}$∠BCD = 30°,
∴∠BEC = 180° - ∠CBE - ∠BCE = 180° - 30° - 30° = 120°.
∵BD⊥AC,∠A = 70°,
∴∠ADB = ∠BDC = 90°,
∴∠ABD = 90° - 70° = 20°.
∵∠ABC = 50°,
∴∠CBD = ∠CBE = ∠ABC - ∠ABD = 50° - 20° = 30°,
∴∠BCD = 90° - ∠CBD = 90° - 30° = 60°.
∵CE平分∠ACB,
∴∠BCE = ∠ACE = $\frac{1}{2}$∠BCD = 30°,
∴∠BEC = 180° - ∠CBE - ∠BCE = 180° - 30° - 30° = 120°.
13.(2024·咸安期中)如图,BD,CD分别是∠ABC,∠ACB的平分线,BP,CP分别是∠EBC,∠FCB的平分线.
(1)填空:当∠ABC = 62°,∠ACB = 68°时,∠D = ______°,∠P = ______°;
(2)当∠A = 48°时,求∠D,∠P的度数;
(3)请你猜想,当∠A的大小变化时,∠D + ∠P的值是否变化?请说明理由.

(1)填空:当∠ABC = 62°,∠ACB = 68°时,∠D = ______°,∠P = ______°;
(2)当∠A = 48°时,求∠D,∠P的度数;
(3)请你猜想,当∠A的大小变化时,∠D + ∠P的值是否变化?请说明理由.
答案:
解:
(1)115 65
(2)
∵∠A = 48°,
∴∠ABC + ∠ACB = 180° - ∠A = 180° - 48° = 132°.
∵∠ACB + ∠BCF = 180°,∠ABC + ∠CBE = 180°,
∴∠ABC + ∠CBE + ∠ACB + ∠BCF = 360°,
∴∠CBE + ∠BCF = 360° - (∠ABC + ∠ACB) = 228°.
∵BP,CP分别是∠EBC,∠FCB的平分线,BD,CD分别是∠ABC,∠ACB的平分线,
∴∠DBC = $\frac{1}{2}$∠ABC,∠DCB = $\frac{1}{2}$∠ACB,∠PBC = $\frac{1}{2}$∠CBE,∠BCP = $\frac{1}{2}$∠BCF,
∴∠DBC + ∠DCB = $\frac{1}{2}$(∠ABC + ∠ACB) = 66°,∠PBC + ∠BCP = $\frac{1}{2}$(∠CBE + ∠BCF) = 114°,
∴∠P = 180° - (∠PBC + ∠BCP) = 180° - 114° = 66°,∠D = 180° - (∠DBC + ∠DCB) = 180° - 66° = 114°.
(3)当∠A的大小变化时,∠D + ∠P的值不变化,理由如下:
由
(2),可知
∠D = 180° - (∠DBC + ∠DCB)
= 180° - $\frac{1}{2}$(∠ABC + ∠ACB)
= 180° - $\frac{1}{2}$(180° - ∠A)
= 180° - 90° + $\frac{1}{2}$∠A
= 90° + $\frac{1}{2}$∠A,
∠P = 180° - (∠PBC + ∠BCP)
= 180° - $\frac{1}{2}$(∠CBE + ∠BCF)
= 180° - $\frac{1}{2}$(180° - ∠ABC + 180° - ∠ACB)
= 180° - $\frac{1}{2}$[360° - (∠ABC + ∠ACB)]
= 180° - $\frac{1}{2}$[360° - (180° - ∠A)]
= 180° - $\frac{1}{2}$(180° + ∠A)
= 180° - 90° - $\frac{1}{2}$∠A
= 90° - $\frac{1}{2}$∠A,
∴∠D + ∠P = 90° + $\frac{1}{2}$∠A + 90° - $\frac{1}{2}$∠A = 180°,
∴当∠A的大小变化时,∠D + ∠P的值不变化.
(1)115 65
(2)
∵∠A = 48°,
∴∠ABC + ∠ACB = 180° - ∠A = 180° - 48° = 132°.
∵∠ACB + ∠BCF = 180°,∠ABC + ∠CBE = 180°,
∴∠ABC + ∠CBE + ∠ACB + ∠BCF = 360°,
∴∠CBE + ∠BCF = 360° - (∠ABC + ∠ACB) = 228°.
∵BP,CP分别是∠EBC,∠FCB的平分线,BD,CD分别是∠ABC,∠ACB的平分线,
∴∠DBC = $\frac{1}{2}$∠ABC,∠DCB = $\frac{1}{2}$∠ACB,∠PBC = $\frac{1}{2}$∠CBE,∠BCP = $\frac{1}{2}$∠BCF,
∴∠DBC + ∠DCB = $\frac{1}{2}$(∠ABC + ∠ACB) = 66°,∠PBC + ∠BCP = $\frac{1}{2}$(∠CBE + ∠BCF) = 114°,
∴∠P = 180° - (∠PBC + ∠BCP) = 180° - 114° = 66°,∠D = 180° - (∠DBC + ∠DCB) = 180° - 66° = 114°.
(3)当∠A的大小变化时,∠D + ∠P的值不变化,理由如下:
由
(2),可知
∠D = 180° - (∠DBC + ∠DCB)
= 180° - $\frac{1}{2}$(∠ABC + ∠ACB)
= 180° - $\frac{1}{2}$(180° - ∠A)
= 180° - 90° + $\frac{1}{2}$∠A
= 90° + $\frac{1}{2}$∠A,
∠P = 180° - (∠PBC + ∠BCP)
= 180° - $\frac{1}{2}$(∠CBE + ∠BCF)
= 180° - $\frac{1}{2}$(180° - ∠ABC + 180° - ∠ACB)
= 180° - $\frac{1}{2}$[360° - (∠ABC + ∠ACB)]
= 180° - $\frac{1}{2}$[360° - (180° - ∠A)]
= 180° - $\frac{1}{2}$(180° + ∠A)
= 180° - 90° - $\frac{1}{2}$∠A
= 90° - $\frac{1}{2}$∠A,
∴∠D + ∠P = 90° + $\frac{1}{2}$∠A + 90° - $\frac{1}{2}$∠A = 180°,
∴当∠A的大小变化时,∠D + ∠P的值不变化.
14. 已知BD为△ABC的角平分线,∠ABC = 60°,∠CDB = 110°,E为线段BC上一点,当△DCE为直角三角形时,∠BDE的度数为__________.
答案:
20°或60°
查看更多完整答案,请扫码查看