2025年精练课堂分层作业八年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年精练课堂分层作业八年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年精练课堂分层作业八年级数学上册北师大版》

3. 如果$\frac{1}{3}x^{a + 2}y^{3}与- 3x^{3}y^{2b - a}$是同类项,那么$a$,$b$的值分别是(
D
)
A.$\begin{cases}a = 1,\\b = 1\end{cases} $
B.$\begin{cases}a = 0,\\b = 2\end{cases} $
C.$\begin{cases}a = 2,\\b = 1\end{cases} $
D.$\begin{cases}a = 1,\\b = 2\end{cases} $
答案: D
4. 若$\vert3x - 2y - 1\vert + \sqrt{x + y - 2} = 0$,则点$(x,y)$在(
D
)
A.第四象限
B.第三象限
C.第二象限
D.第一象限
答案: D
5. 关于$x$,$y的方程组\begin{cases}x = 3 - m,\\y = 1 + 2m,\end{cases} 则y用只含x$的代数式表示为(
B
)
A.$y = 2x + 7$
B.$y = 7 - 2x$
C.$y = - 2x - 5$
D.$y = 2x - 5$
答案: B
6. 已知方程组$\begin{cases}2x + 2y = 2a,\\x - y = 2a\end{cases} 的解是3x - 5y = 35$的一个解,那么$a$的值为(
A
)
A.5
B.6
C.7
D.8
答案: A
7. 已知二元一次方程组$\begin{cases}3a + 2b = 5,\\2a + 3b = 4,\end{cases} 则a - b = $
1
.
答案: 1
8. 已知关于$x$,$y的方程组\begin{cases}ax + by = 3,\\2ax - by = 1\end{cases} 的解是\begin{cases}x = 1,\\y = - 1,\end{cases} 则a + 2b$的值为
$-2$
.
答案: $-2$(或写为数值形式,根据题目要求这里填数值$- 2$对应的规范答案形式,若题目在试卷中是填空则直接写数值)一般此类基础计算题答案填数值,即:$-2$的填空形式为:$\boxed{- 2}$(若题目在作业等场景要求填具体数,这里按填数处理)。
9. 已知关于$x$,$y的方程组\begin{cases}x + 2y = k - 1,\\2x + y = 5k + 4\end{cases} 的解满足x + y - 5 = 0$,则$k$的值为
2
.
答案: 2
10. 定义一种新运算“※”,规定$x※y = ax + by^{2}$,其中$a$,$b$为常数,且$- 1※1 = 0$,$2※1 = 3$,则$1※3 = $
10
.
答案: 10
11. 解方程组.
(1)$\begin{cases}x = y + 1,\\2x + y = 8;\end{cases} $
(2)$\begin{cases}2x - 3y = 3,\\x + 2y = - 2;\end{cases} $
(3)$\begin{cases}4x + 3y = 10,\\x + 4y = 9;\end{cases} $
(4)$\begin{cases}x + 3y = 8,\\3x - y = 4.\end{cases} $
答案:
(1)
$\begin{cases}x = y + 1,①\\2x + y = 8;②\end{cases}$
把①代入②,得$2(y + 1) + y = 8$
$2y + 2 + y = 8$
$3y = 6$
$y = 2$
把$y = 2$代入①,得$x = 2 + 1 = 3$
所以方程组的解为$\begin{cases}x = 3\\y = 2\end{cases}$
(2)
$\begin{cases}2x - 3y = 3,①\\x + 2y = - 2;②\end{cases}$
由②得$x = - 2 - 2y$,③
把③代入①,得$2(- 2 - 2y) - 3y = 3$
$- 4 - 4y - 3y = 3$
$- 7y = 7$
$y = - 1$
把$y = - 1$代入③,得$x = - 2 - 2×(- 1) = 0$
所以方程组的解为$\begin{cases}x = 0\\y = - 1\end{cases}$
(3)
$\begin{cases}4x + 3y = 10,①\\x + 4y = 9;②\end{cases}$
由②得$x = 9 - 4y$,③
把③代入①,得$4(9 - 4y) + 3y = 10$
$36 - 16y + 3y = 10$
$- 13y = - 26$
$y = 2$
把$y = 2$代入③,得$x = 9 - 4×2 = 1$
所以方程组的解为$\begin{cases}x = 1\\y = 2\end{cases}$
(4)
$\begin{cases}x + 3y = 8,①\\3x - y = 4;②\end{cases}$
由②得$y = 3x - 4$,③
把③代入①,得$x + 3(3x - 4) = 8$
$x + 9x - 12 = 8$
$10x = 20$
$x = 2$
把$x = 2$代入③,得$y = 3×2 - 4 = 2$
所以方程组的解为$\begin{cases}x = 2\\y = 2\end{cases}$
12. 已知$M = \sqrt[2m + n - 3]{m + 3}$是$m + 3$的算术平方根,$N = \sqrt[2m - n]{n - 2}$是$n - 2$的立方根. 求$(n - m)^{2023}$的值.
-1
答案: $-1$

查看更多完整答案,请扫码查看

关闭