2025年全效核心素养测评高中数学必修第一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全效核心素养测评高中数学必修第一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年全效核心素养测评高中数学必修第一册人教版》

13. 已知集合$A = \{x|-1\lt x\lt 1\}$,$B = \{x|x\lt a\}$.
(1)若$A\cap B\neq \varnothing$,求$a$的取值范围;
(2)若$A\cup B = \{x|x\lt 1\}$,求$a$的取值范围.
答案: 13.解:
(1)$A = \{x\mid -1 < x < 1\}$,$B = \{x\mid x < a\}$,且$A\cap B\neq\varnothing$,
$\therefore a > -1$,即$a$的取值范围是$\{a\mid a > -1\}$.
(2)$A = \{x\mid -1 < x < 1\}$,$B = \{x\mid x < a\}$,且$A\cup B = \{x\mid x < 1\}$,$\therefore a$的取值范围是$\{a\mid -1 < a\leqslant 1\}$.
14. 已知集合$A = \{x|x^{2}+ax + b = 0\}$,$B = \{x|x^{2}+cx + 6 = 0\}$,$A\cup B = \{2,3\}$,$A\cap B = \{3\}$,求$a$,$b$,$c$的值.
答案: 14.解:$\because A\cap B = \{3\}$,$\therefore 3$是方程$x^{2}+cx + 6 = 0$的根,则$3^{2}+3c + 6 = 0$,解得$c = -5$,$\therefore B = \{x\mid x^{2}-5x + 6 = 0\} = \{3,2\}$.
$\because A\cup B = \{2,3\}$,$A\cap B = \{3\}$,$\therefore A\neq B$,则$A = \{3\}$,$\therefore$方程$x^{2}+ax + b = 0$有两个相等的实数根$3$,$\therefore\begin{cases}\Delta = a^{2}-4b = 0\\9 + 3a + b = 0\end{cases}$,解得$\begin{cases}a = -6\\b = 9\end{cases}$.综上,$a = -6$,$b = 9$,$c = -5$.
15. (2024·集美中学高一检测)设集合$A$,$B$,$C$均为非空集合,下列命题中,为真命题的是(
D
)

A.若$A\cap B = B\cap C$,则$A = C$
B.若$A\cup B = B\cup C$,则$A = C$
C.若$A\cup B = B\cap C$,则$C\subseteq B$
D.若$A\cap B = B\cup C$,则$C\subseteq B$
答案: 15.D
16. 已知集合$A = \{x|x^{2}+4x - 5 = 0\}$,$B = \{x|x^{2}+2(a + 2)x + a^{2}+2a - 2 = 0\}$.
(1)若$A\cap B = \{1\}$,求实数$a$的值;
(2)若$A\cup B = A$,求实数$a$的取值范围.
答案: 16.
(1)解:由题可知,$A = \{-5,1\}$,$\because A\cap B = \{1\}$,$\therefore 1\in B$,即$x = 1$是方程$x^{2}+2(a + 2)x + a^{2}+2a - 2 = 0$的根,则有$1 + 2(a + 2)+a^{2}+2a - 2 = 0$,即$a^{2}+4a + 3 = 0$,解得$a = -1$,或$a = -3$.当$a = -1$时,$B = \{x\mid x^{2}+2x - 3 = 0\} = \{1,-3\}$,满足$A\cap B = \{1\}$;当$a = -3$时,$B = \{x\mid x^{2}-2x + 1 = 0\} = \{1\}$,满足$A\cap B = \{1\}$,均符合题意.综上,实数$a$的值为$-1$或$-3$.
(2)$\because A\cup B = A$,$\therefore B\subseteq A$.当$B = \varnothing$时,$\Delta = [2(a + 2)]^{2}-4(a^{2}+2a - 2)=8a + 24 < 0$,解得$a < -3$;
若$B\neq\varnothing$,当$B = \{1\}$时,由
(1)知,$a = -3$,符合题意;
当$B = \{-5\}$时,可得$\begin{cases}(-5)^{2}+2(a + 2)×(-5)+a^{2}+2a - 2 = 0\\\Delta = [2(a + 2)]^{2}-4(a^{2}+2a - 2)=8a + 24 = 0\end{cases}$,无解;
当$B = \{1,-5\}$时,可得$\begin{cases}(-5)^{2}+2(a + 2)×(-5)+a^{2}+2a - 2 = 0\\1^{2}+2(a + 2)+a^{2}+2a - 2 = 0\end{cases}$,无解.
综上,实数$a$的取值范围是$a\leqslant -3$.

查看更多完整答案,请扫码查看

关闭