2025年名校课堂八年级数学上册人教版5四川专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂八年级数学上册人教版5四川专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂八年级数学上册人教版5四川专版》

1. 先约分,再求值:$\frac{2x + 4y}{x^{2}+4xy + 4y^{2}}$,其中$x = 1$,$y = - 2$.
答案: 解:原式$=\frac {2(x+2y)}{(x+2y)^{2}}=\frac {2}{x+2y}$.当$x=1$,$y=-2$时,原式$=\frac {2}{1+2×(-2)}=\frac {2}{1-4}=-\frac {2}{3}.$
2. 已知$\frac{x}{y}=2$,求$\frac{x^{2}-y^{2}}{x^{2}-2xy + y^{2}}$的值.
答案: 解:$\because \frac {x}{y}=2,\therefore x=2y$.
∴原式$=\frac {(x+y)(x-y)}{(x-y)^{2}}=\frac {x+y}{x-y}=\frac {2y+y}{2y-y}=\frac {3y}{y}=3.$
3. 已知$a:b:c = 2:3:5$,求$\frac{b^{2}+c^{2}}{a^{2}}$的值.
答案: 解:$\because a:b:c=2:3:5$,
∴可设$a=2k$,$b=3k$,$c=5k$($k≠0$).
∴$\frac {b^{2}+c^{2}}{a^{2}}=\frac {(3k)^{2}+(5k)^{2}}{(2k)^{2}}=\frac {9k^{2}+25k^{2}}{4k^{2}}=\frac {34k^{2}}{4k^{2}}=\frac {17}{2}.$
4. 已知$m^{2}-3m + 2 = 0$,求$\frac{2025m}{m^{2}-2m + 2}$的值.
答案: 解:$\because m^{2}-3m+2=0,\therefore m^{2}+2=3m$.
∴原式$=\frac {2025m}{(m^{2}+2)-2m}=\frac {2025m}{3m-2m}=\frac {2025m}{m}=2025.$
【例】已知$x+\frac{1}{x}=3$,试求:
(1) $x^{2}+\frac{1}{x^{2}}$的值.
(2) $x-\frac{1}{x}$的值.
解:(1) $\because x+\frac{1}{x}=3$,
$\therefore(x+\frac{1}{x})^{2}=x^{2}+$
2
$+\frac{1}{x^{2}}=$
9
.
$\therefore x^{2}+\frac{1}{x^{2}}=$
7
.
(2) $\because x^{2}+\frac{1}{x^{2}}=$
7

$\therefore(x-\frac{1}{x})^{2}=$
x^{2}-2+\frac{1}{x^{2}}
$=$
5
.
$\therefore x-\frac{1}{x}=$
\pm\sqrt{5}
.
方法指导:(1) $x^{2}+\frac{1}{x^{2}}=(x\pm\frac{1}{x})^{2}\mp2$;
(2) $x^{4}+\frac{1}{x^{4}}=(x^{2}\pm\frac{1}{x^{2}})^{2}\mp2$;
(3) $(x+\frac{1}{x})^{2}-(x-\frac{1}{x})^{2}=4$.
答案:
(1)2 9 7
(2)7 $x^{2}-2+\frac{1}{x^{2}}$ 5 $\pm\sqrt{5}$
1. 已知$x^{2}-5x + 1 = 0$,则$x^{2}+\frac{1}{x^{2}}$的值为
23
.
答案: 23
2. (教材P145新增习题T12变式)若$x-\frac{1}{x}=4$,则$\frac{3x^{2}}{x^{4}-7x^{2}+1}=$(
A
)

A.$\frac{3}{11}$
B.$-1$
C.$\frac{1}{3}$
D.$-\frac{3}{5}$
答案: A
3. 已知$x+\frac{1}{x}=\frac{13}{6}$且$0\lt x\lt1$,求$x^{2}-\frac{1}{x^{2}}$的值.
答案: 解:$\because x+\frac {1}{x}=\frac {13}{6},\therefore (x+\frac {1}{x})^{2}=\frac {169}{36}.\therefore x^{2}+2+\frac {1}{x^{2}}=\frac {169}{36}.\therefore x^{2}-2+\frac {1}{x^{2}}=\frac {25}{36}.\therefore (x-\frac {1}{x})^{2}=\frac {25}{36}.\because 0<x<1,\therefore x-\frac {1}{x}<0.\therefore x-\frac {1}{x}=-\frac {5}{6}.\therefore x^{2}-\frac {1}{x^{2}}=(x+\frac {1}{x})(x-\frac {1}{x})=\frac {13}{6}×(-\frac {5}{6})=-\frac {65}{36}.$

查看更多完整答案,请扫码查看

关闭