第15页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
5. 解方程:
(1)$x^{2}-2x=3.$
(2)$3x^{2}-\sqrt {2}x-\frac {1}{4}=0.$
(3)$2(x+1)^{2}=x^{2}-1.$
(4)$3x^{2}-10x+8=0.$
(1)$x^{2}-2x=3.$
(2)$3x^{2}-\sqrt {2}x-\frac {1}{4}=0.$
(3)$2(x+1)^{2}=x^{2}-1.$
(4)$3x^{2}-10x+8=0.$
答案:
5.解:
(1)【解法一:配方法】$x^2 - 2x + 1 = 3 + 1$,即$(x - 1)^2 = 4.\therefore x - 1 = \pm 2.\therefore x_1 = 3,x_2 = - 1$.【解法二:十字相乘法】$x^2 - 2x = 3,x^2 - 2x - 3 = 0,(x - 3)(x + 1) = 0,\therefore x - 3 = 0$或$x + 1 = 0.\therefore x_1 = 3,x_2 = - 1$.
(2)$\because a = 3,b = - \sqrt{2},c = - \frac{1}{4},\therefore \Delta = ( - \sqrt{2})^2 - 4 × 3 × ( - \frac{1}{4}) = 5 > 0.\therefore x = \frac{- ( - \sqrt{2}) \pm \sqrt{5}}{2 × 3} = \frac{\sqrt{2} \pm \sqrt{5}}{6},\therefore x_1 = \frac{\sqrt{2} + \sqrt{5}}{6},x_2 = \frac{\sqrt{2} - \sqrt{5}}{6}$.
(3)原程整理,得$(x + 1)[2(x + 1) - (x - 1)] = 0,(x + 1)[2x + 2 - x + 1] = 0,(x + 1)(x + 3) = 0,\therefore x + 1 = 0$或$x + 3 = 0.\therefore x_1 = - 1,x_2 = - 3$.
(4)$(x - 2)(3x - 4) = 0,\therefore x - 2 = 0$或$3x - 4 = 0.\therefore x_1 = 2,x_2 = \frac{4}{3}$.
(1)【解法一:配方法】$x^2 - 2x + 1 = 3 + 1$,即$(x - 1)^2 = 4.\therefore x - 1 = \pm 2.\therefore x_1 = 3,x_2 = - 1$.【解法二:十字相乘法】$x^2 - 2x = 3,x^2 - 2x - 3 = 0,(x - 3)(x + 1) = 0,\therefore x - 3 = 0$或$x + 1 = 0.\therefore x_1 = 3,x_2 = - 1$.
(2)$\because a = 3,b = - \sqrt{2},c = - \frac{1}{4},\therefore \Delta = ( - \sqrt{2})^2 - 4 × 3 × ( - \frac{1}{4}) = 5 > 0.\therefore x = \frac{- ( - \sqrt{2}) \pm \sqrt{5}}{2 × 3} = \frac{\sqrt{2} \pm \sqrt{5}}{6},\therefore x_1 = \frac{\sqrt{2} + \sqrt{5}}{6},x_2 = \frac{\sqrt{2} - \sqrt{5}}{6}$.
(3)原程整理,得$(x + 1)[2(x + 1) - (x - 1)] = 0,(x + 1)[2x + 2 - x + 1] = 0,(x + 1)(x + 3) = 0,\therefore x + 1 = 0$或$x + 3 = 0.\therefore x_1 = - 1,x_2 = - 3$.
(4)$(x - 2)(3x - 4) = 0,\therefore x - 2 = 0$或$3x - 4 = 0.\therefore x_1 = 2,x_2 = \frac{4}{3}$.
6. 新考向 阅读理解 阅读材料:为解方程$(x^{2}-1)^{2}-3(x^{2}-1)=0$,我们可以将$x^{2}-1$视为一个整体,然后设$x^{2}-1=y$,将原方程化为$y^{2}-3y=0$①,解得$y_{1}=0,y_{2}=3.$
当$y=0$时,$x^{2}-1=0,x^{2}=1,\therefore x=\pm 1;$
当$y=3$时,$x^{2}-1=3,x^{2}=4,\therefore x=\pm 2.$
∴原方程的解为$x_{1}=1,x_{2}=-1,x_{3}=2,x_{4}=-2.$
解答问题:
(1)在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了的数学的(
A. 方程思想
B. 转化思想
C. 数形结合思想
D. 建模思想
(2)利用上述材料中的方法解方程:$(x^{2}+x)^{2}-(x^{2}+x)-2=0.$
当$y=0$时,$x^{2}-1=0,x^{2}=1,\therefore x=\pm 1;$
当$y=3$时,$x^{2}-1=3,x^{2}=4,\therefore x=\pm 2.$
∴原方程的解为$x_{1}=1,x_{2}=-1,x_{3}=2,x_{4}=-2.$
解答问题:
(1)在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了的数学的(
B
)A. 方程思想
B. 转化思想
C. 数形结合思想
D. 建模思想
(2)利用上述材料中的方法解方程:$(x^{2}+x)^{2}-(x^{2}+x)-2=0.$
答案:
6.解:
(1)B
(2)令$x^2 + x = m$,则原方程化为$m^2 - m - 2 = 0,\therefore (m - 2)(m + 1) = 0.\therefore m - 2 = 0$或$m + 1 = 0$,解得$m = 2$或$m = - 1$.当$m = 2$时,$x^2 + x = 2$,即$x^2 + x - 2 = 0,\therefore (x + 2)(x - 1) = 0$,则$x + 2 = 0$或$x - 1 = 0$,解得$x_1 = - 2,x_2 = 1$;当$m = - 1$时,$x^2 + x = - 1$,即$x^2 + x + 1 = 0,\because \Delta = 1^2 - 4 × 1 × 1 = - 3 < 0$,此方程无实数根.综上所述,原方程的解为$x_1 = - 2,x_2 = 1$.
(1)B
(2)令$x^2 + x = m$,则原方程化为$m^2 - m - 2 = 0,\therefore (m - 2)(m + 1) = 0.\therefore m - 2 = 0$或$m + 1 = 0$,解得$m = 2$或$m = - 1$.当$m = 2$时,$x^2 + x = 2$,即$x^2 + x - 2 = 0,\therefore (x + 2)(x - 1) = 0$,则$x + 2 = 0$或$x - 1 = 0$,解得$x_1 = - 2,x_2 = 1$;当$m = - 1$时,$x^2 + x = - 1$,即$x^2 + x + 1 = 0,\because \Delta = 1^2 - 4 × 1 × 1 = - 3 < 0$,此方程无实数根.综上所述,原方程的解为$x_1 = - 2,x_2 = 1$.
查看更多完整答案,请扫码查看