第14页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
1. 解下列方程:
(1)$(2x+1)^{2}=9.$
(2)$3(x+1)^{2}-108=0.$
(3)$x^{2}-4x+4=5.$
(1)$(2x+1)^{2}=9.$
(2)$3(x+1)^{2}-108=0.$
(3)$x^{2}-4x+4=5.$
答案:
1.解:
(1)$2x + 1 = \pm 3.\therefore 2x + 1 = 3$或$2x + 1 = - 3.\therefore x_1 = 1,x_2 = - 2$.
(2)$3(x + 1)^2 = 108,(x + 1)^2 = 36.\therefore x + 1 = \pm 6.\therefore x_1 = 5,x_2 = - 7$.
(3)$(x - 2)^2 = 5.\therefore x - 2 = \pm \sqrt{5}.\therefore x_1 = 2 + \sqrt{5},x_2 = 2 - \sqrt{5}$.
(1)$2x + 1 = \pm 3.\therefore 2x + 1 = 3$或$2x + 1 = - 3.\therefore x_1 = 1,x_2 = - 2$.
(2)$3(x + 1)^2 = 108,(x + 1)^2 = 36.\therefore x + 1 = \pm 6.\therefore x_1 = 5,x_2 = - 7$.
(3)$(x - 2)^2 = 5.\therefore x - 2 = \pm \sqrt{5}.\therefore x_1 = 2 + \sqrt{5},x_2 = 2 - \sqrt{5}$.
2. 解下列方程:
(1)$x^{2}-2x-99=0.$
(2)$3x^{2}-6x+2=0.$
(1)$x^{2}-2x-99=0.$
(2)$3x^{2}-6x+2=0.$
答案:
2.解:
(1)$x^3 - 2x = 99,x^2 - 2x + 1 = 99 + 1$,即$(x - 1)^2 = 100.\therefore x - 1 = \pm 10.\therefore x_1 = 11,x_2 = - 9$.
(2)$x^2 - 2x = - \frac{2}{3},x^2 - 2x + 1 = - \frac{2}{3} + 1$,即$(x - 1)^2 = \frac{1}{3},\therefore x - 1 = \pm \frac{\sqrt{3}}{3}.\therefore x_1 = 1 + \frac{\sqrt{3}}{3},x_2 = 1 - \frac{\sqrt{3}}{3}$.
(1)$x^3 - 2x = 99,x^2 - 2x + 1 = 99 + 1$,即$(x - 1)^2 = 100.\therefore x - 1 = \pm 10.\therefore x_1 = 11,x_2 = - 9$.
(2)$x^2 - 2x = - \frac{2}{3},x^2 - 2x + 1 = - \frac{2}{3} + 1$,即$(x - 1)^2 = \frac{1}{3},\therefore x - 1 = \pm \frac{\sqrt{3}}{3}.\therefore x_1 = 1 + \frac{\sqrt{3}}{3},x_2 = 1 - \frac{\sqrt{3}}{3}$.
3. 解下列方程:
(1)$x(x-2)+x-2=0.$
(2)$9x^{2}-(x-1)^{2}=0.$
(1)$x(x-2)+x-2=0.$
(2)$9x^{2}-(x-1)^{2}=0.$
答案:
3.解:
(1)$(x + 1)(x - 2) = 0,\therefore x + 1 = 0$或$x - 2 = 0.\therefore x_1 = - 1,x_2 = 2$.
(2)$(3x + x - 1)(3x - x + 1) = 0,(4x - 1)(2x + 1) = 0,\therefore 4x - 1 = 0$或$2x + 1 = 0.\therefore x_1 = \frac{1}{4},x_2 = - \frac{1}{2}$.
(1)$(x + 1)(x - 2) = 0,\therefore x + 1 = 0$或$x - 2 = 0.\therefore x_1 = - 1,x_2 = 2$.
(2)$(3x + x - 1)(3x - x + 1) = 0,(4x - 1)(2x + 1) = 0,\therefore 4x - 1 = 0$或$2x + 1 = 0.\therefore x_1 = \frac{1}{4},x_2 = - \frac{1}{2}$.
4. 解下列方程:
(1)$2x^{2}+2x-1=0.$
(2)$3x^{2}-2x-8=0.$
(1)$2x^{2}+2x-1=0.$
(2)$3x^{2}-2x-8=0.$
答案:
4.解:
(1)$\because a = 2,b = 2,c = - 1,\therefore \Delta = b^2 - 4ac = 2^2 - 4 × 2 × ( - 1) = 12 > 0.\therefore x = \frac{-2 \pm \sqrt{12}}{2 × 2} = \frac{-2 \pm 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}.\therefore x_1 = \frac{-1 + \sqrt{3}}{2},x_2 = \frac{-1 - \sqrt{3}}{2}$.
(2)$\because a = 3,b = - 2,c = - 8,\therefore \Delta = b^2 - 4ac = ( - 2)^2 - 4 × 3 × ( - 8) = 100 > 0.\therefore x = \frac{2 \pm \sqrt{100}}{2 × 3} = \frac{2 \pm 10}{6}.\therefore x_1 = 2,x_2 = \frac{-4}{3}$.
(1)$\because a = 2,b = 2,c = - 1,\therefore \Delta = b^2 - 4ac = 2^2 - 4 × 2 × ( - 1) = 12 > 0.\therefore x = \frac{-2 \pm \sqrt{12}}{2 × 2} = \frac{-2 \pm 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}.\therefore x_1 = \frac{-1 + \sqrt{3}}{2},x_2 = \frac{-1 - \sqrt{3}}{2}$.
(2)$\because a = 3,b = - 2,c = - 8,\therefore \Delta = b^2 - 4ac = ( - 2)^2 - 4 × 3 × ( - 8) = 100 > 0.\therefore x = \frac{2 \pm \sqrt{100}}{2 × 3} = \frac{2 \pm 10}{6}.\therefore x_1 = 2,x_2 = \frac{-4}{3}$.
查看更多完整答案,请扫码查看