2025年探究学案课时卷八年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年探究学案课时卷八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年探究学案课时卷八年级数学下册人教版》

13. 如图,四边形ABCD是菱形,CE⊥AB于点E,CF⊥AD于点F,求证:DF = BE.
  
答案: 证明:连接AC,证CE = CF,△BCE≌△DCF即可.
14. 如图,四边形ABCD中,E为BC的中点,四边形AECD为菱形,EF⊥CD于点F.
(1)求证:AB⊥AC;
(2)若AB = 6,BC = 10,求EF的长.
      
答案: 解:
(1)
∵EA = EB = EC,
∴∠B = ∠BAE,
∠EAC = ∠ECA,
∴∠BAC = 90°,
∴AB⊥AC;
(2)过点A作AH⊥BC于点H,
∵AB·AC = BC·AH,
∴6×8 = 10·AH,
∴AH = $\frac{24}{5}$,

∵CE·AH = CD·EF,
∴EF = AH = $\frac{24}{5}$.
15. 如图,菱形ABCD的边长为13,对角线AC = 24,点E,F分别是边CD,BC的中点,连接EF并延长与AB的延长线相交于点G,求EG的长.
      
答案: 解:连接BD,交AC于点O,
∵菱形ABCD的边长为13,点E,F分别是边CD,
BC的中点,
∴AB//CD,AB = BC = CD = DA = 13,
EF//BD,
∵AC,BD是菱形的对角线,AC = 24,
∴AC⊥BD,AO = CO = 12,
OB = OD,又
∵AB//CD,EF//BD,
∴DE//BG,
BD//EG,
∴四边形BDEG是平行四边形,
∴BD = EG,在△COD中,
∵OC⊥OD,CD = 13,CO = 12,
∴OB = OD = $\sqrt{13^{2}-12^{2}}$ = 5,
∴BD = 2OD = 10,
∴EG = BD = 10.
16. 在菱形ABCD中,过点D作DE⊥BA,交BA的延长线于点E.
(1)如图1,若AB = 5,AC = 6,求线段DE的长;
(2)如图2,F为BA上一动点,G为BC延长线上一点,∠FDG =∠BAD. 求证:DF = DG.
   图1  图2
答案: 解:
(1)连接BD交AC于点O.
∵四边形ABCD是菱形,
AC = 6,
∴AC⊥BD,OA = OC = 3,BD = 2OB,
∵AB = 5,
∴OB = 4,
∴BD = 2OB = 8,
∵S_{菱形ABCD} = AB·DE = $\frac{1}{2}$AC·BD,5DE = 24,
∴DE = $\frac{24}{5}$;
(2)连接BD,过点D作DH⊥BG,垂足为H.
∵四边形ABCD为菱形,
∴AD//BC,BD平分∠ABC.
∵DH⊥BG,DE⊥BA,
∴DE = DH.
∵AD//BC,
∴∠BAD + ∠ABC = 180°.
∵∠FDG = ∠BAD,
∴∠FDG + ∠ABC = 180°,
∵∠FDG + ∠ABC + ∠BFD + ∠G = 360°,
∴∠BFD + ∠G = 180°,
∵∠BFD + ∠EFD = 180°,
∴∠EFD = ∠G,又∠E = ∠DHG = 90°,
∴△DFE≌△DGH,
∴DF = DG.

查看更多完整答案,请扫码查看

关闭