2025年探究学案课时卷八年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年探究学案课时卷八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年探究学案课时卷八年级数学下册人教版》

重点强化一 含30°或45°或60°角的三角形→作垂线→构造特殊直角三角形
1. 如图,在△ABC中,$BC = \sqrt{6} + \sqrt{2}$,∠B = 30°,∠C = 45°,求AC的长.
                           
答案: 解:过点A作AD⊥BC于点D.
∵∠C = 45°,
∴设AD = x,则AC = $\sqrt{2}AD=\sqrt{2}x$,CD = x,
∵∠B = 30°,
∴AB = 2x,在Rt△ABD中,
∠ADB = 90°,由勾股定理可得AD² + BD² = AB²,
得BD = $\sqrt{3}x$,
∴BC = BD + CD = ($\sqrt{3}+1$)x = $\sqrt{6}+\sqrt{2}$,解得x = $\sqrt{2}$,
故AC = 2.
2. 如图,在△ABC中,∠B = 45°,∠A = 75°,$AC = 2\sqrt{3}$,求AB的长.
    
答案: 2. 解:过点A作AD⊥BC于点D,
∵∠B = 45°,
∴∠BAD = 45°,∠DAC = 30°,
∴CD = $\frac{1}{2}AC=\sqrt{3}$,AD = $\sqrt{AC^{2}-CD^{2}} = 3$,
∵∠B = 45°,
∴BD = AD = 3,
∴AB = $\sqrt{AD^{2}+BD^{2}} = 3\sqrt{2}$.
3. 如图,在△ABC中,$AC = \sqrt{2}$,∠C = 45°,∠BAC = 105°,求BC的长.
                           
答案: 3. 解:过点A作AD⊥BC于点D.
∵∠C = 45°,
∴AD = CD,在Rt△ACD中,
AD² + CD² = AC² = 2,
∴AD = CD = 1,
在Rt△ABD中,∠BAD = 60°,∠B = 30°,
BA = 2AD = 2,BD = $\sqrt{AB^{2}-AD^{2}}=\sqrt{3}$,
∴BC = BD + CD = $\sqrt{3}+1$.
4. 如图,在△ABC中,∠C = 120°,∠B = 30°,$AB = 2\sqrt{3}$,求AC的长.
                           
答案: 4. 解:过点A作AD⊥BC交BC的延长线于点D.
∵∠B = 30°,
∴AD = $\frac{1}{2}AB=\sqrt{3}$,BD = $\sqrt{AB^{2}-AD^{2}} = 3$,
在Rt△ACD中,设CD = x,
∵∠DAC = 30°,
∴AC = 2x,
则($\sqrt{3}$)² + x² = (2x)²,
∴CD = x = 1,
∴AC = 2CD = 2.
5. 如图,在△ABC中,∠C = 30°,∠B = 135°,$AB = 2\sqrt{2}$,求AC和BC的长.
    
答案: 5. 解:过点A作AD⊥CB的延长线于点D.
∵∠ABD = 180° - ∠ABC = 45°,
∴AD = BD = 2,在Rt△ACD中,∠C = 30°,
∴AC = 2AD = 4,
CD = $\sqrt{AC^{2}-AD^{2}} = 2\sqrt{3}$,
BC = CD - BD = 2$\sqrt{3}-2$.
6. (1)【阅读材料】如图1,在Rt△ADC中,∠C = 90°,∠D = 22.5°,求$\frac{AC}{CD}$的值.
解:在CD上截取BC = AC,则∠ABC = ∠BAC = 45° = 2∠D,∴AB = BD,设AC = a,则BC = a,$AB = BD = \sqrt{2}a$,又∵$CD = BD + CB = (\sqrt{2} + 1)a$,$\frac{AC}{CD} = \frac{a}{(\sqrt{2} + 1)a} = \sqrt{2} - 1$.
(2)【实际运用】如图2,在Rt△ADC中,∠C = 90°,∠D = 15°,求$\frac{AC}{CD}$的值.
 图2
答案: 解:$\frac{CD}{AC}=2 - \sqrt{3}$. 提示:作AD的垂直平分线交CD于点B,则BD = AB.

查看更多完整答案,请扫码查看

关闭