2025年探究学案课时卷八年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年探究学案课时卷八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年探究学案课时卷八年级数学下册人教版》

10. 如图,在□ABCD中,点E,F分别在BC,AD上,AC与EF相交于点O,且AO = CO.
(1) 求证:△AOF≌△COE;
(2) 连接AE,CF,求证:AE//CF.
答案: 证明:
(1)$\because$四边形$ABCD$是平行四边形,$\therefore AD// BC,\therefore \angle OAF=\angle OCE,\because AO = CO,\angle AOF=\angle COE,$
$\therefore \triangle AOF\cong \triangle COE(ASA);$
(2)由
(1)得$\triangle AOF\cong \triangle COE,\therefore FO = EO$,又$\because AO = CO,\therefore$四边形$AECF$是平行四边形,$\therefore AE// CF.$
11. 如图,E是□ABCD的边AD延长线上一点,连接BE,CE,BD. BE交CD于点F. 添加以下条件,不能判定四边形BCED为平行四边形的是 (  )

A. ∠ABD = ∠DCE
B. DF = CF
C. ∠AEB = ∠BCD
D. ∠AEC = ∠CBD
答案: C
12. 如图,在□ABCD中,点E,F,G,H分别是AB,BC,CD,DA上的点,且AE = CG,BF = DH. 求证:EG与FH互相平分.
答案: 证明:连接$GH,HE,EF,FG$,证$\triangle AHE\cong \triangle CFG,\triangle DHG\cong \triangle BFE,$
$\therefore HE = FG,HG = EF,$
$\therefore$四边形$HEFG$为平行四边形,
$\therefore EG$与$FH$互相平分.
13. 如图,点O是□ABCD对角线AC的中点,过点O的直线ME,NF分别交边于点M,E,N,F. 求证:MN≌EF.
答案: 证明:连接$MF,NE$,证$\triangle AOM\cong \triangle COE,$
$\triangle AOF\cong \triangle CON,\therefore OM = OE,OF = ON,$
$\therefore$四边形$MNEF$为平行四边形,$\therefore MN\underline{\underline{//}}EF.$
14. 如图,在四边形ABCD中,AD//BC,DE⊥AB,垂足为E,EB = BC,CE平分∠DCB;
(1) 求证:四边形ABCD为平行四边形;
(2) 若AE = 3,BE = 5,求CE的长;
(3) 过点B作EC的垂线,交AD的延长线于点H,求证:DH = AE.
答案: 证明:
(1)$\because EB = BC,CE$平分$\angle DCB,$
$\therefore \angle CEB=\angle BCE=\angle DCE,\therefore DC// AB,\because AD// BC,$
$\therefore$四边形$ABCD$为平行四边形;
(2)解:$\because$四边形$ABCD$为平行四边形,$EB = BC,$
$\therefore AD = BC = EB = 5,DC = AB = 8,\because DE\perp AB,$
$\therefore DE^{2}=AD^{2}-AE^{2}=16,EC=\sqrt{DE^{2}+DC^{2}}=4\sqrt{5};$
(3)证明:$\because EB = BC,BH\perp EC,\therefore \angle EBH=\angle CBH.$
$\because AD// BC,\therefore \angle H=\angle CBH,\therefore \angle H=\angle EBH,$
$\therefore AH = AB,\therefore AD + DH = AE + EB,$
$\because AD = BC = EB,\therefore DH = AE.$

查看更多完整答案,请扫码查看

关闭