2025年探究学案课时卷八年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年探究学案课时卷八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年探究学案课时卷八年级数学下册人教版》

重点强化一 折叠→构造直角三角形
1. 如图,在△ABC中,AB = 20,AC = 12,∠ACB = 90°,D是BC上一点,把△ABC沿直线AD折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.
    
答案: 解:设$CD = x$,$\because AB = 20$,$AC = 12$,$\angle ACB = 90^{\circ}$,
$\therefore BC = 16$,$\because$把$\triangle ABC$折叠,
使$AB$落在直线$AC$上,$\therefore BD = B'D = 16 - x$,
$B'C = AB - AC = 20 - 12 = 8$,
$\angle DCB' = 90^{\circ}$,$\therefore$在$Rt\triangle DCB'$中,$CD^{2}+B'C^{2}=DB'^{2}$,
$\therefore x^{2}+8^{2}=(16 - x)^{2}$,解得$x = 6$,
$\therefore$重叠部分(阴影部分)的面积为$\frac{1}{2}\times12\times6 = 36$.
重点强化二 折叠→构造三垂直图形
2. 如图,在平面直角坐标系中,将长方形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处. 已知点D的坐标为(10,8),求点E的坐标.
    FCx
答案: 解:$AF = AD = 10$,$AO = 8$,$\therefore$在$Rt\triangle AOF$中,$OF = 6$,
$FC = OC - OF = 10 - 6 = 4$,
设$EC = a$,在$Rt\triangle EFC$中,$EC^{2}+FC^{2}=EF^{2}$,
$\therefore a^{2}+4^{2}=(8 - a)^{2}$,
$\therefore a = 3$,$\therefore E(10,3)$.
重点强化三 折叠→构造全等三角形
3. 如图,在长方形ABCD中,点E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,若AB = 6,BC = 4√6,求FD的长.
   
答案: 解:$\because \triangle EGF\cong\triangle EDF$,设$DF = GF = x$,
$CF = CD - DF = 6 - x$,在$Rt\triangle BFC$中,
$(6 + x)^{2}=(4\sqrt{6})^{2}+(6 - x)^{2}$,$\therefore x = 4$,$DF = 4$.
重点强化四 折叠→构造等腰三角形
4. 如图,将长方形ABCD沿直线BD折叠,使点C落在点E处,BE交AD于点F,BC = 8,AB = 4,求DF的长.
     BD
答案: 解:由翻折的性质,得$\angle 1 = \angle 2$,$\because \angle 1 = \angle 3$,$\therefore \angle 2 = \angle 3$,$\therefore BF = DF$,$\because AD = 8$,$\therefore AF = 8 - DF$,在$Rt\triangle ABF$中,$AB^{2}+AF^{2}=BF^{2}$,$\therefore 4^{2}+(8 - DF)^{2}=DF^{2}$,解得$DF = 5$.
5. 如图,在长方形纸片ABCD中,AB = 8,将纸片折叠,使顶点B落在边AD上的点E处,折痕的一端点G在边BC上,折痕的另一端点F在边AD上,且BG = 10.
 (1)求证EF = EG;(2)求AF的长.
  
答案: 解:
(1)$\because$纸片折叠后顶点$B$落在边$AD$上的点$E$处,
$\therefore \angle BGF = \angle EGF$,
$\because$长方形纸片$ABCD$的边$AD// BC$,$\therefore \angle BGF = \angle EFG$,$\therefore \angle EGF = \angle EFG$,$\therefore EF = EG$;
(2)$\because$纸片折叠后顶点$B$落在边$AD$上的点$E$处,
$\therefore EG = BG = 10$,$HE = AB = 8$,$FH = AF$,
$\therefore EF = EG = 10$,在$Rt\triangle EFH$中,
$FH = \sqrt{EF^{2}-HE^{2}}=\sqrt{10^{2}-8^{2}} = 6$,$\therefore AF = FH = 6$.

查看更多完整答案,请扫码查看

关闭