2025年探究学案课时卷八年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年探究学案课时卷八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年探究学案课时卷八年级数学下册人教版》

9. 如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,若∠EAF = 60°,BE = 2,DF = 3,求□ABCD的周长和面积.
 BE
答案: 解:周长 = 20;面积 = 12√3.
10. 如图,在□ABCD中,AF,BE分别平分∠BAD与∠ABC,交BC,AD于点F,E. (1)AF与BE的位置关系是________;(2)若AF = 4,BE = 8,则AB的长为________.
                               
答案: AF⊥BE 2√5
11. 在□ABCD中,∠A = 30°,AD = 4√3,BD = 4,求□ABCD的面积.
答案:
解:过点D作DE⊥AB于点E,易得DE = 1/2AD = 2√3,AE = √3/2AD = 6,BE = √(BD² - DE²) = 2.
①当点E在AB边上时,如图1,
▱ABCD的面积 = AB·DE = 8×2√3 = 16√3;
②当点E在AB的延长线上时,如图2,
▱ABCD的面积 = AB·DE = 4×2√3 = 8√3.
综上,▱ABCD的面积为16√3或8√3;
EB图1
图2
12. 如图,F是□ABCD的边CD延长线上一点,BF交AC于点E,AD = AE = BE.
(1)求证:AF = BC;
(2)若∠ADC = 102°,求∠BAC的度数.
       
答案: 解:
(1)
∵AE = BE,
∴∠EAB = ∠EBA.由▱ABCD得CD//AB,
∴∠FCE = ∠EAB,∠CFE = ∠EBA,
∴∠CFE = ∠ECF,
∴EF = EC.
∵∠FEA = ∠CEB,AE = BE,
∴△FEA≌△CEB,
∴AF = BC.
(2)设∠CAB = x,则∠FCE = x,∠EBA = x.由▱ABCD得AD//BC,AD = BC = EB,
∴∠BCE = ∠BEC = ∠EAB + ∠EBA = 2x. ∠ADC + ∠DCB = 180°,
∵∠ADC = 102°,
∴102° + x + 2x = 180°,
∴x = 26°,即∠BAC = 26°.
13. 如图,□ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,AB = CF,连接DE,DF.
(1)求证:DF² + BF² = DE²;
(2)G为DE的中点,连接CG. 若AD = 3,求CG的长.
         AB
答案: 证明:
(1)
∵△BEF为等边三角形,
∴BF = EF = BE,∠BFE = ∠FBE = 60°.
∵四边形ABCD是平行四边形,
∴AD = BC,AB = DC,AB//CD,
∴∠DCB = ∠FBE = 60°.
∵AB = CF,
∴DC = CF,
∴∠CDF = ∠CFD = 1/2∠DCB = 30°,
∴∠DFE = ∠CFD + ∠BFE = 90°,
∴DF² + BF² = DF² + EF² = DE².
(2)解:延长CG交BE于点H,
∵DC//AB,
∴∠CDG = ∠GEH,又DG = GE,∠CGD = ∠EGH,
∴△CDG≌△HEG,
∴CG = GH,CD = HE. 又CD = CF,
∴CF = HE,又BF = BE,
∴BF - CF = BE - HE,即BC = BH. 又∠FBE = 60°,
∴△BCH为等边三角形,
∴CH = BC = AD = 3,
∴CG = GH = 1/2CH = 3/2.

查看更多完整答案,请扫码查看

关闭