2025年探究学案课时卷八年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年探究学案课时卷八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年探究学案课时卷八年级数学下册人教版》

1. 如图,网格中每个小正方形的边长均为 1.
(1)$AC=$________;
(2)$\triangle ABC$的面积是________;
(3)求$\triangle ABC$中$AC$边上的高$BH$的长.
     
答案: 解:
(1)$AC = \sqrt{10}$;
(2)$\frac{11}{2}$;
(3)$S_{\triangle ABC}=\frac{1}{2}AC\cdot BH=\frac{11}{2}$,故$BH = \frac{11\sqrt{10}}{10}$.
2. 如图,已知$AB = 5$,$BC = 12$,$CD = 13$,$DA = 10$,$AB\perp BC$,求四边形$ABCD$的面积.
        
答案: 解:连接$AC$,则$AC = 13 = CD$,
过点$C$作$CM\perp AD$于点$M$,$\therefore AM = DM = 5$,
在$Rt\triangle ACM$中可求$CM = \sqrt{13^{2}-5^{2}} = 12$,
$\therefore S_{\triangle ABC}=\frac{1}{2}\times12\times5 = 30$,
$S_{\triangle ACD}=\frac{1}{2}\times10\times12 = 60$,
$\therefore S_{四边形ABCD}=S_{\triangle ABC}+S_{\triangle ACD}=90$.
3. 如图,在$\triangle ABC$中,$BC = 14$,$AC = 13$,$AB = 15$,求$S_{\triangle ABC}$.
        
答案: 解:过点$A$作$AD\perp BC$于点$D$,设$CD = x$,
则$BD = 14 - x$.$\because AB^{2}-BD^{2}=AC^{2}-CD^{2}$,
$\therefore 15^{2}-(14 - x)^{2}=13^{2}-x^{2}$,$\therefore x = 5$,$CD = 5$,
$\therefore AD = \sqrt{AC^{2}-CD^{2}} = 12$,$\therefore S_{\triangle ABC}=84$.
4. 在$\triangle ABC$中,若$\angle B = 45^{\circ}$,$AB = 10\sqrt{2}$,$AC = 5\sqrt{5}$,求$\triangle ABC$的面积.
答案: 解:过点$A$作$AD\perp BC$,垂足为点$D$,
在$Rt\triangle ABD$中,$AD = BD = \frac{\sqrt{2}}{2}AB = 10$;在$Rt\triangle ACD$中,$AD = 10$,$AC = 5\sqrt{5}$,
$\therefore CD = \sqrt{AC^{2}-AD^{2}} = 5$,
$\therefore BC = BD + CD = 15$或$BC = BD - CD = 5$,
$\therefore S_{\triangle ABC}=\frac{1}{2}BC\cdot AD = 75$或$25$.

查看更多完整答案,请扫码查看

关闭