2026年学易优同步学案导学高中数学必修第一册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年学易优同步学案导学高中数学必修第一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第206页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
- 第235页
- 第236页
- 第237页
- 第238页
- 第239页
- 第240页
- 第241页
- 第242页
- 第243页
- 第244页
- 第245页
- 第246页
- 第247页
- 第248页
- 第249页
- 第250页
- 第251页
- 第252页
- 第253页
- 第254页
- 第255页
- 第256页
- 第257页
- 第258页
- 第259页
- 第260页
- 第261页
- 第262页
- 第263页
- 第264页
10. 已知$a > 0$,试比较$a$与$\frac{1}{a}$的大小。
答案:
10.解 因为$a - \frac{1}{a} = \frac{a² - 1}{a} = \frac{(a - 1)(a + 1)}{a}, a > 0,$
所以当a > 1时,$\frac{(a - 1)(a + 1)}{a} > 0,$有$a > \frac{1}{a};$
当a = 1时,$\frac{(a - 1)(a + 1)}{a} = 0,$有$a = \frac{1}{a};$
当0 < a < 1时,$\frac{(a - 1)(a + 1)}{a} < 0,$有$a < \frac{1}{a}$
综上所述,当a > 1时,$a > \frac{1}{a};$
当a = 1时,$a = \frac{1}{a};$
当0 < a < 1时,$a < \frac{1}{a}$
所以当a > 1时,$\frac{(a - 1)(a + 1)}{a} > 0,$有$a > \frac{1}{a};$
当a = 1时,$\frac{(a - 1)(a + 1)}{a} = 0,$有$a = \frac{1}{a};$
当0 < a < 1时,$\frac{(a - 1)(a + 1)}{a} < 0,$有$a < \frac{1}{a}$
综上所述,当a > 1时,$a > \frac{1}{a};$
当a = 1时,$a = \frac{1}{a};$
当0 < a < 1时,$a < \frac{1}{a}$
11. 足球赛期间,某球迷俱乐部一行$56$人从旅馆乘出租车到球场为中国队加油,现有$A$,$B$两个出租车队,$A$队比$B$队少$3$辆。若全部安排乘$A$队的车,每辆车坐$5$人,车不够,每辆车坐$6$人,有的车未坐满;若全部安排乘$B$队的车,每辆车坐$4$人,车不够,每辆车坐$5$人,有的车未坐满。则$A$队有出租车(
A.$11$辆
B.$10$辆
C.$9$辆
D.$8$辆
B
)A.$11$辆
B.$10$辆
C.$9$辆
D.$8$辆
答案:
11.B
12. 已知$a_{1} > 1$,$a_{2} > 1$,设$P = \frac{1}{a_{1}} + \frac{1}{a_{2}}$,$Q = \frac{1}{a_{1}a_{2}} + 1$,则$P$与$Q$的大小关系为(
A.$P > Q$
B.$P < Q$
C.$P = Q$
D.不确定
B
)A.$P > Q$
B.$P < Q$
C.$P = Q$
D.不确定
答案:
$12.B P - Q = (\frac{1}{a₁} + \frac{1}{a₂}) - (\frac{1}{a₁a₂} + 1) = \frac{a₁ + a₂}{a₁a₂} - \frac{1 + a₁a₂}{a₁a₂} = \frac{a₁ + a₂ - 1 - a₁a₂}{a₁a₂} = \frac{(a₁ - 1)(a₂ - 1) - (a₁a₂)}{a₁a₂}$
因为a₁ > 1, a₂ > 1,
所以a₁ - 1 > 0, 1 - a₂ < 0, a₁a₂ > 0,
所以$P - Q = \frac{(a₁ - 1)(1 - a₂)}{a₁a₂} < 0,$所以P < Q.
因为a₁ > 1, a₂ > 1,
所以a₁ - 1 > 0, 1 - a₂ < 0, a₁a₂ > 0,
所以$P - Q = \frac{(a₁ - 1)(1 - a₂)}{a₁a₂} < 0,$所以P < Q.
13. 已知$a$,$b \in \mathbf{R}$,若$ab = 1$,则$a^{2} + b^{2}$的最小值是
2
,当且仅当$a = b =$±1
时取得最小值。
答案:
13.2 ±1 根据a² + b² - 2ab = (a - b)² ≥ 0,故a² + b² ≥ 2ab = 2,当且仅当a - b = 0即a = b = ±1时等号成立.
14. 我国经典数学名著《九章算术》中有这样的一道题:今有出钱五百七十六,买竹七十八,欲其大小率之,向各几何?其意是:今有人出钱$576$,买竹子$78$根,拟分大、小两种竹子为单位进行计算,每根大竹子比小竹子贵$1$钱,问买大、小竹子各多少根?每根竹子单价各是多少钱?则在这个问题中大竹子每根的单价可能为(
A.$6$钱
B.$7$钱
C.$8$钱
D.$9$钱
C
)A.$6$钱
B.$7$钱
C.$8$钱
D.$9$钱
答案:
14.C 依题意可设买大竹子x根,每根单价为m钱,则买小竹子(78 - x)根,每根单价为(m - 1)钱,所以576 = mx + (78 - x)(m - 1),
即78m + x = 654,即x = 6(109 - 13m),
因为0 ≤ x ≤ 78,
所以$\begin{cases} 109 - 13m ≥ 0 \\ 6(109 - 13m) ≤ 78 \end{cases}$
解得$\frac{96}{13} ≤ m ≤ \frac{109}{13}$
根据选项m = 8, x = 30,
所以买大竹子30根,每根8钱.
即78m + x = 654,即x = 6(109 - 13m),
因为0 ≤ x ≤ 78,
所以$\begin{cases} 109 - 13m ≥ 0 \\ 6(109 - 13m) ≤ 78 \end{cases}$
解得$\frac{96}{13} ≤ m ≤ \frac{109}{13}$
根据选项m = 8, x = 30,
所以买大竹子30根,每根8钱.
15. 某单位组织职工去某地参观学习需包车前往。甲车队说:“如果领队买一张全票,其余人可享受$7.5$折优惠。”乙车队说:“你们属团体票,按原价的$8$折优惠。”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠。
答案:
15.解 设该单位职工有n人(n ∈ N*),
全票价为x元,坐甲车需花y₁元,坐乙车需花y₂元,
则$y₁ = x + \frac{3}{4}x · (n - 1) = \frac{1}{4}x + \frac{3}{4}nx, y₂ = \frac{4}{5}nx.$
所以$y₁ - y₂ = \frac{1}{4}x + \frac{3}{4}nx - \frac{4}{5}nx = \frac{1}{4}x - \frac{1}{20}nx = \frac{1}{4}x(1 - \frac{n}{5}).$
当n = 5时,y₁ = y₂;
当n > 5时,y₁ < y₂;
当n < 5时,y₁ > y₂.
因此当单位去的人数为5时,两车队收费相同;多于5人时,甲车队更优惠;少于5人时,乙车队更优惠.
全票价为x元,坐甲车需花y₁元,坐乙车需花y₂元,
则$y₁ = x + \frac{3}{4}x · (n - 1) = \frac{1}{4}x + \frac{3}{4}nx, y₂ = \frac{4}{5}nx.$
所以$y₁ - y₂ = \frac{1}{4}x + \frac{3}{4}nx - \frac{4}{5}nx = \frac{1}{4}x - \frac{1}{20}nx = \frac{1}{4}x(1 - \frac{n}{5}).$
当n = 5时,y₁ = y₂;
当n > 5时,y₁ < y₂;
当n < 5时,y₁ > y₂.
因此当单位去的人数为5时,两车队收费相同;多于5人时,甲车队更优惠;少于5人时,乙车队更优惠.
查看更多完整答案,请扫码查看