2025年名校课堂八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂八年级数学上册人教版》

6. (教材P43习题T1变式)(2024·西藏)如图,$C$是线段$AB$的中点,$AD = BE$,$\angle A = \angle B$。求证:$\angle D = \angle E$。
答案: 6.证明:$\because C$是线段$AB$的中点,$\therefore AC = BC$.在$\triangle DAC$和$\triangle EBC$中,$\begin{cases}AD = BE, \\\angle A = \angle B, \\AC = BC,\end{cases}$$\therefore \triangle DAC \cong \triangle EBC(SAS)$.$\therefore \angle D = \angle E$.
7. 新考向 开放性问题 如图,在$\triangle ABC$与$\triangle DEF$中,$\angle B = \angle E = 90^{\circ}$,点$B$,$F$,$C$,$E$在一条直线上,$AB = DE$。要使$\triangle ABC\cong\triangle DEF$,给出下列三个条件:①$AC = DF$;②$\angle A = \angle D$;③$BF = CE$。请从以上三个条件中选择一个合适的条件并证明$\triangle ABC\cong\triangle DEF$。(图形中不得添加任何字母)
答案: 7.解:选择①,证明如下:$\because \angle B = \angle E = 90^{\circ}$,$\therefore \triangle ABC$与$\triangle DEF$均为直角三角形.在$Rt\triangle ABC$和$Rt\triangle DEF$中,$\begin{cases}AC = DF, \\AB = DE,\end{cases}$ $\therefore Rt\triangle ABC \cong$$Rt\triangle DEF(HL)$.选择②,证明如下:在$\triangle ABC$和$\triangle DEF$中,$\begin{cases}\angle A = \angle D, \\AB = DE, \\\therefore \triangle ABC \cong \triangle DEF(ASA).\\\angle B = \angle E,\end{cases}$选择③,证明如下:$\because BF = CE$,$\therefore BC = EF$.在$\triangle ABC$和$\triangle DEF$中,$\begin{cases}AB = DE, \\\angle B = \angle E, \\BC = EF,\end{cases}$ $\therefore \triangle ABC \cong \triangle DEF$$(SAS)$.
8. 如图,$\angle C = \angle E$,$AC = AE$,点$D$在边$BC$上,$\angle 1 = \angle 2$,$AC$和$DE$相交于点$O$。求证:$\triangle ABC\cong\triangle ADE$。
答案: 8.证明:$\because \angle ADC = \angle ADE + \angle 2 = \angle 1 + \angle B$,且$\angle 1 = \angle 2$,$\therefore \angle ADE =$$\angle B$.在$\triangle ABC$和$\triangle ADE$中,$\begin{cases}\angle C = \angle E, \\\angle B = \angle ADE, \\AC = AE,\end{cases}$ $\therefore \triangle ABC \cong \triangle ADE$$(AAS)$.
9. 如图,$CB$为$\angle ACE$的平分线,$F$是线段$CB$上一点,$CA = CF$,$\angle B = \angle E$,延长$EF$与线段$AC$相交于点$D$。
(1)求证:$AB = FE$。
(2)若$ED\perp AC$,$AB// CE$,求$\angle A$的度数。
答案: 9.解:
(1)证明:$\because CB$为$\angle ACE$的平分线,$\therefore \angle ACB = \angle FCE$.在$\triangle ABC$和$\triangle FEC$中,$\begin{cases}\angle B = \angle E, \\\angle ACB = \angle FCE, \\CA = CF,\end{cases}$ $\therefore \triangle ABC \cong \triangle FEC(AAS)$.$\therefore AB = FE$.
(2)$\because AB // CE$,$\therefore \angle B = \angle FCE$.$\therefore \angle E = \angle B = \angle FCE = \angle ACB$.$\because ED$$\perp AC$,即$\angle CDE = 90^{\circ}$,$\therefore \angle E + \angle FCE + \angle ACB = 90^{\circ}$,即$3\angle ACB =$$90^{\circ}$.$\therefore \angle ACB = 30^{\circ}$.$\therefore \angle B = 30^{\circ}$.$\therefore \angle A = 180^{\circ} - \angle B - \angle ACB = 180^{\circ} -$

查看更多完整答案,请扫码查看

关闭