2025年名校课堂八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂八年级数学上册人教版》

1. 如图所示,$AB = AC$,$BD = CE$,$AD = AE$。求证:$\triangle ABE\cong\triangle ACD$。
答案: 1.证明:$\because BD = CE$,$\therefore BD + DE = CE + DE$.$\therefore BE = CD$.在$\triangle ABE$和$\triangle ACD$中,$\begin{cases}AE = AD, \\AB = AC, \\\therefore\triangle ABE \cong \triangle ACD(SSS).\\BE = CD,\end{cases}$
2. (2024·云南)如图,在$\triangle ABC$和$\triangle AED$中,$AB = AE$,$\angle BAE = \angle CAD$,$AC = AD$。求证:$\triangle ABC\cong\triangle AED$。
答案: 2.证明:$\because \angle BAE = \angle CAD$,$\therefore \angle BAE + \angle CAE = \angle CAD + \angle CAE$,即$\angle BAC = \angle EAD$.在$\triangle ABC$和$\triangle AED$中,$\begin{cases}AB = AE, \\\angle BAC = \angle EAD, \\AC = AD,\end{cases}$$\therefore \triangle ABC$$\cong \triangle AED(SAS)$.
3. 如图,点$C$,$E$,$F$,$B$在同一条直线上,$DF\perp BC$,$AE// DF$,$AB = CD$,$AE = DF$。求证:$CE = BF$。
答案: 3.证明:$\because DF \perp BC$,$\therefore \angle DFC = 90^{\circ}$.$\because AE // DF$,$\therefore \angle AEB = \angle DFC =90^{\circ}$.在$Rt\triangle AEB$和$Rt\triangle DFC$中,$\begin{cases}AB = DC, \\AE = DF,\end{cases}$ $\therefore Rt\triangle AEB \cong Rt\triangle DFC$$(HL)$.$\therefore BE = CF$.$\therefore BE - EF = CF - EF$,即$CE = BF$.
4. 新考向 开放性问题 如图,$\triangle ABC$的顶点$A$,$B$和$\triangle DEF$的顶点$D$,$E$在同一条直线上,且$\angle A = \angle EDF$,$\angle C = \angle F$,请再添加一个条件,使得$BC = EF$,并说明理由。
答案: 4.解:答案不唯一.例如添加的条件为$AC = DF$.理由:在$\triangle ABC$和$\triangle DEF$中,$\begin{cases}\angle A = \angle EDF, \\AC = DF, \\\angle C = \angle F,\end{cases}$ $\therefore \triangle ABC \cong \triangle DEF(ASA)$.$\therefore BC = EF$.
5. 如图,已知点$E$,$C$在线段$BF$上,$BE = CF$,$\angle B = \angle DEF$,$\angle BAC = \angle EDF$。
(1)求证:$\triangle ABC\cong\triangle DEF$。
(2)连接$AD$,若$\angle CAD = \angle F = 68^{\circ}$,$DE$平分$\angle ADF$,求$\angle DEF$的度数。
答案: 5.解:
(1)证明:$\because BE = CF$,$\therefore BE + EC = CF + EC$,即$BC = EF$.在$\triangle ABC$和$\triangle DEF$中,$\begin{cases}\angle BAC = \angle EDF, \\\angle B = \angle DEF, \\BC = EF,\end{cases}$ $\therefore \triangle ABC \cong \triangle DEF(AAS)$.
(2)由
(1)知,$\triangle ABC \cong \triangle DEF$,$\therefore \angle ACB = \angle F$.$AC // DF$.$\because \angle CAD = \angle F =68^{\circ}$,$\therefore \angle ADF = 180^{\circ} - \angle CAD = 112^{\circ}$.$\because DE$平分$\angle ADF$,$\therefore \angle ADE =$$\angle DEF = \frac{1}{2}\angle ADF = 56^{\circ}$.$\therefore \angle DEF = 180^{\circ} - \angle EDF - \angle F = 180^{\circ} - 56^{\circ}$$68^{\circ} = 56^{\circ}$.

查看更多完整答案,请扫码查看

关闭