2025年智慧学堂八年级数学下册华师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年智慧学堂八年级数学下册华师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年智慧学堂八年级数学下册华师大版》

10. 如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE = $\frac{1}{2}$BC,连结DE,CF.
(1)求证:四边形CEDF是平行四边形;
(2)若AB = 4,AD = 6,∠B = 60°,求DE的长.

答案:
(1)证明:
∵四边形ABCD是平行四边形,
∴AD//BC,AD = BC.
∵F是AD的中点,
∴FD = $\frac{1}{2}$AD.
∵CE = $\frac{1}{2}$AD,
∴FD = CE.
∵FD//CE,
∴四边形CEDF是平行四边形;
(2)解:过D点作DG⊥BE于G,
∵四边形ABCD是平行四边形,
∴∠DCG = ∠B = 60°,CD = AB = 4.
∴∠CDG = 30°,
∴CG = 2,
∴DG = 2$\sqrt{3}$.
∵四边形CEDF是平行四边形,
∴CE = DF = $\frac{1}{2}$AD = 3,
∴GE = 3 - 2 = 1,
∴DE = $\sqrt{(2\sqrt{3})² + 1²}$ = $\sqrt{13}$.
11. 如图所示,四边形ABCD是平行四边形,按下列条件得到的四边形BFDE是平行四边形的有( )
①图甲,DE⊥AC,BF⊥AC;
②图乙,DE平分∠ADC,BF平分∠ABC;
③图丙,E是AB的中点,F是CD的中点;
④图丁,E是AB上一点,EF⊥AB.


A. 3个
B. 4个
C. 1个
D. 2个
答案: A
12. 如图,在□ABCD中,MN//AC,分别交DA,DC的延长线于点M,N,交AB,BC于点P、Q,求证:MP = NQ.

答案: 证明:
∵四边形ABCD是平行四边形,
∴AB//ND,MD//BC.又
∵MN//AC,
∴四边形ACQM和四边形ACNP是平行四边形,
∴AC = PN,AC = MQ,
∴MQ - PQ = PN - PQ,即MP = NQ.
13. 如图,在□ABCD中,∠C和∠D的平分线交于点M,DM的延长线交BC于点E,试猜想:
(1)CM与DE的位置关系;
(2)M在DE的什么位置上?试说明理由;
(3)若DE = 24,CM = 5,则点M到BC的距离是多少?
BE
答案:
(1)CM⊥DE.理由:
∵AD//BC,∠ADC + ∠BCD = 180°.DE、CM分别平分∠ADC、∠BCD,
∴∠MDC = $\frac{1}{2}$∠ADC,∠DCM = $\frac{1}{2}$∠DCB,
∴∠MDC + ∠MCD = 90°,
∴∠DMC = 90°,即CM⊥DE;
(2)M在DE的中点处.理由:
∵AD//BC,CM⊥DE,
∴∠ADE = ∠CEM.又
∵∠ADE = ∠CDE,
∴∠CDE = ∠CED,
∴CD = CE.
∵CM⊥DE,
∴EM = MD,即M在DE的中点处;
(3)M到CD的距离是$\frac{12×5}{13}$ = $\frac{60}{13}$.理由:
∵CE = 12,ME = MD = 5,
∴DE = 10,
∴在Rt△CDE中,根据勾股定理可得CD = $\sqrt{12² + 5²}$ = 13.设M到CD的距离为h,根据三角形面积公式可得$\frac{1}{2}$×CD×h = $\frac{1}{2}$×DE×CM,即$\frac{1}{2}$×13×h = $\frac{1}{2}$×10×12,解得h = $\frac{60}{13}$.
14. 如图,E是□ABCD内一点,且ED⊥CD,EB⊥CB,∠AED = 135°.
(1)求证:∠ADE = ∠ABE;
(2)求∠EAB的度数;
(3)求证:EB = BC;
(4)AB - DE与AE的数量关系为__________(直接写出结果).
PB
答案:
(1)证明:
∵DE⊥CD,EB⊥CB,
∴∠EDC = ∠EBC = 90°.
∵四边形ABCD为平行四边形,
∴∠ADC = ∠ABC,
∴∠ADC - ∠EDC = ∠ABC - ∠EBC,即∠ADE = ∠ABE;
(2)解:延长DE交AB于F,因为DE⊥CD,DC//AB,所以DE⊥AB,∠AFE = ∠AED = 90°;
(3)证明:在△AEF和△DFA中,∠AFE = ∠DAF = 90°,∠AEF = ∠DFA,AF = AF,
∴△AEF≌△DFA(A.A.S.),
∴AE = DF,EF = FA.又因为四边形ABCD是平行四边形,AB = CD,所以AB - AF = CD - DF,即FB = CE.在△BEF和△EAD中,∠BFE = ∠EAD = 90°,∠BEF = ∠AED,FB = CE = AD,
∴△BEF≌△EAD(A.A.S.),
∴BE = AD;
(4)解:AE = $\sqrt{2}$,BE = AD,在Rt△ABE中,根据勾股定理可得AB = $\sqrt{AE² + BE²}$ = $\sqrt{(\sqrt{2})² + AD²}$.

查看更多完整答案,请扫码查看

关闭