2025年金版教程高中新课程创新导学案高中数学必修第一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版教程高中新课程创新导学案高中数学必修第一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年金版教程高中新课程创新导学案高中数学必修第一册人教版》

第30页
(2)已知集合$A = \{ x \mid x = a^{2} - 4a + 5,a \in \mathbf{R}\}$,$B = \{ y \mid y = 4b^{2} + 4b + 3,b \in \mathbf{R}\}$,则下列关系正确的是 (
B
)

A.$A = B$
B.$B\subsetneqq A$
C.$A \subseteq B$
D.$B \subsetneqq A$
答案:
(2)[解析] $\because A = \{x \mid x = (a - 2)^2 + 1, a \in \mathbb{R}\} = \{x \mid x \geq 1\}$,$B = \{y \mid y = (2b + 1)^2 + 2, b \in \mathbb{R}\} = \{y \mid y \geq 2\}$,$\therefore B \subsetneq A$。
[答案] B
(3)设集合$A = \{ x \mid x + 1 \leq 0$或$x - 4 \geq 0\}$,$B = \{ x \mid 2a \leq x \leq a + 2\}$.若$B \subseteq A$,则实数$a$的取值范围是
$\{a \mid a \leq -3$,或$a \geq 2\}$
.
答案:
(3)[解析] 由题意得$A = \{x \mid x \leq -1$,或$x \geq 4\}$。因为$B \subseteq A$,①当$B = \varnothing$时,满足$B \subseteq A$,则$2a > a + 2 \Rightarrow a > 2$;②当$B \neq \varnothing$时,则$\begin{cases} 2a \leq a + 2, \\ a + 2 \leq -1 \end{cases}$或$\begin{cases} 2a \leq a + 2, \\ 2a \geq 4, \end{cases}$即$a \leq -3$或$a = 2$。综上所述,实数$a$的取值范围为$\{a \mid a \leq -3$,或$a \geq 2\}$。
[答案] $\{a \mid a \leq -3$,或$a \geq 2\}$
[素养训练1] (1)如果集合$P = \{ x \mid x = 2k,k \in \mathbf{N}\}$,$M = \{ x \mid x = 2^{2k + 1},k \in \mathbf{N}\}$,那么集合$P$与$M$之间的关系是 (
A
)

A.$M \subseteq P$
B.$P \subseteq M$
C.$P = M$
D.$P$,$M$互不包含
答案: [素养训练1] 
(1)A [由$P = \{x \mid x = 2k, k \in \mathbb{N}\}$可得集合$P$是由全体非负偶数构成的,即$P = \{0, 2, 4, 6, ·s\}$,$M = \{x \mid x = 2^{2k + 1}, k \in \mathbb{N}\} = \{x \mid x = 2 × 4^k, k \in \mathbb{N}\}$,集合$M$是由$4^k (k \in \mathbb{N})$的$2$倍构成的,即$M = \{2, 8, 32, 128, ·s\}$,$\therefore M \subseteq P$。故选A。]
(2)已知集合$A = \{ x \mid ax = 1,a \in \mathbf{R}\}$,$B = \{ x \mid x^{2} + x - 2 = 0\}$,若$A \subseteq B$,则所有$a$的取值构成的集合为 ( )

A.$\left\{ - \frac{1}{2} \right\}$
B.$\left\{ - \frac{1}{2},1 \right\}$
C.$\{ 0,1\}$
D.$\{ -\frac {1}{2},0,1\}$
答案:
(2)D [因为$B = \{x \mid x^2 + x - 2 = 0\} = \{1, -2\}$,当$a = 0$时,$A = \varnothing$,满足题意;当$a \neq 0$时,由$ax = 1$,得$x = \frac{1}{a}$,所以$\frac{1}{a} = 1$或$\frac{1}{a} = -2$,即$a = 1$或$a = -\frac{1}{2}$。故所求集合为$\left\{ -\frac{1}{2}, 0, 1 \right\}$。故选D。]
典例2 (1)设集合$M = \{ x \mid 0 \leq x < 4\}$,$N = \left\{ x \mid \frac{1}{3} \leq x \leq 5 \right\}$,则$M \cap N =$ (
B
)

A.$\left\{ x \mid 0 < x \leq \frac{1}{3} \right\}$
B.$\left\{ x \mid \frac{1}{3} \leq x < 4 \right\}$
C.$\{ x \mid 4 \leq x < 5\}$
D.$\{ x \mid 0 < x \leq 5\}$
答案:
典例2 
(1)[解析] 集合$M$,$N$在数轴上表示如图所示,由图可得$M \cap N = \left\{ x \mid \frac{1}{3} \leq x < 4 \right\}$。故选B。

[答案] B
(2)如图,已知全集$U = \{ - 2, - 1,3,4,5\}$,集合$A = \{ - 1,3,5\}$,$B = \{ - 2,5\}$,则图中阴影部分表示的集合是 (
D
)


A.$\{ - 2, - 1,3,5\}$
B.$\{ - 2,5\}$
C.$\{ 5\}$
D.$\{ - 2\}$
答案:
(2)[解析] 由图可知阴影部分表示的集合是$B \cap (\complement_U A)$,因为$U = \{-2, -1, 3, 4, 5\}$,$A = \{-1, 3, 5\}$,$B = \{-2, 5\}$,所以$\complement_U A = \{-2, 4\}$,故$B \cap (\complement_U A) = \{-2\}$。故选D。
[答案] D
(3)已知$A = \{ x \mid x^{2} - 2x - 8 = 0\}$,$B = \{ x \mid x^{2} + ax + a^{2} - 12 = 0\}$.若$B \cup A \neq A$,求实数$a$的取值范围.
$\{a \mid -4 \leq a < 4$,且$a \neq -2\}$
答案:
(3)[解析] 若$B \cup A = A$,则$B \subseteq A$。$\because A = \{x \mid x^2 - 2x - 8 = 0\} = \{-2, 4\}$,$\therefore$集合$B$有以下三种情况:①当$B = \varnothing$时,$\Delta = a^2 - 4(a^2 - 12) < 0$,即$a^2 > 16$,$\therefore a < -4$或$a > 4$。②当$B$是单元素集时,$\Delta = a^2 - 4(a^2 - 12) = 0$,$\therefore a = -4$或$a = 4$。若$a = -4$,则$B = \{2\}$,不符合题意;若$a = 4$,则$B = \{-2\} \subseteq A$,符合题意。③当$B = \{-2, 4\}$时,$-2$,$4$是方程$x^2 + ax + a^2 - 12 = 0$的两根,$\therefore \begin{cases} -a = -2 + 4, \\ a^2 - 12 = -2 × 4, \end{cases} \therefore a = -2$。综上所述,当$B \cup A = A$时,实数$a$的取值范围为$\{a \mid a < -4$,或$a = -2$,或$a \geq 4\}$,$\therefore$当$B \cup A \neq A$时,实数$a$的取值范围为$\{a \mid -4 \leq a < 4$,且$a \neq -2\}$。
[答案] $\{a \mid -4 \leq a < 4$,且$a \neq -2\}$
[素养训练2] (1)设全集$U = \{ 0,1,2,4,6,8\}$,集合$M = \{ 0,4,6\}$,$N = \{ 0,1,6\}$,则$M \cup (\complement_{U}N) =$ (
A
)

A.$\{ 0,2,4,6,8\}$
B.$\{ 0,1,4,6,8\}$
C.$\{ 1,2,4,6,8\}$
D.$U$
答案: [素养训练2] 
(1)A [由题意可得$\complement_U N = \{2, 4, 8\}$,则$M \cup (\complement_U N) = \{0, 2, 4, 6, 8\}$。故选A。]
(2)已知集合$A = \{ x \mid - 1 \leq x \leq 3\}$,$B = \{ x \mid x < 2\}$,则$A \cap (\complement_{\mathbf{R}}B) =$ (
D
)

A.$\{ x \mid x > 2\}$
B.$\{ x \mid x \geq 3\}$
C.$\{ x \mid - 1 < x \leq 2\}$
D.$\{ x \mid 2 \leq x \leq 3\}$
答案:
(2)D [$\because B = \{x \mid x < 2\}$,$\therefore \complement_R B = \{x \mid x \geq 2\}$,$\therefore A \cap (\complement_R B) = \{x \mid 2 \leq x \leq 3\}$。]

查看更多完整答案,请扫码查看

关闭